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Abstract
This paper discusses a robotic cutting technique – Spatial Wire Cutting (SWC) 
– performed by the coordinated movement of two six-axis robotic arms which 
control the curvature of a hot-wire adopting itself against the resistance of the 
processed material. By escaping from the linearity of the cutting medium, com-
bined with an integrated approach towards computational design, simulation 
and automated fabrication, this technique fosters the efficient manufacturing 
of double-curved surface objects by single cutting procedures and significantly 
expands the set of possible hot-wire cutting geometries. This paper presents a 
custom fabrication-informed computational design and simulation framework. It 
also outlines comparative analytical studies between digitally created SWC ob-
jects and their physically fabricated counterparts. Finally, it concludes with the 
architectural potentials of the discussed technique. 
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1.	 Introduction and Background
Recent technological advances have fostered the relationship between digi-
tal design and fabrication of architectural freeform shapes, opening a cross- 
fertilizing field from which various research directions are evolving. However, 
fabricating bespoke double-curved surfaces with commonly used fabrication 
techniques such as CNC-milling or 3D printing still comes at a high cost due 
to inefficient material use and time consumption (Schipper et al. 2014). The conse-
quences are the simplification and post-rationalization of a specific design 
proposition. Digitally controlled cutting techniques, however, which have be-
come very common in the larger fields of architecture, design and construc-
tion (Pigram & McGee 2011; Rippmann & Block 2011; McGee, Feringa & Søndergaard 2012), offer a fast, 
low-cost and material-efficient fabrication of non-standard volumetric elements 
for diverse applications (such as bespoke formwork components, prototype 
construction, etc.). These elements are created through the repeated move-
ment of a cutting medium (e.g. hot-wire, steel cutting wire, hot-blade; Broek 

et al. 2002 ) through a synthetic material (e.g. expanded polystyrene) that melts 
the material just in advance of contact (thermal cutting). However, depend-
ing on the cutting medium, the range of geometries is limited. The project 
‘BladeRunner’ (GXN 2016) is one of the most recent approaches, in which 
a hot-blade is dynamically bent to cut “surfaces swept out by continuously 
varying families of planar Euler elastica” (Søndergaard, et al. 2016), that reduces the 
geometrical restrictions.

The research presented in this paper focuses on Spatial Wire Cutting (SWC), 
a novel cutting technique performed by two six-axis lightweight robotic arms 
connected through a single hot-wire, which is attached to their end-effectors 
(see Fig. 1). Contrary to the above-mentioned approaches, it operates in transition 
states between thermal cutting and thermo-mechanical cutting to utilize the forces 
opposite to the moving direction to manipulate the hot-wire, which takes up the 
form of a curve. This curve is controlled by the robot’s coordinated movement 
and is constantly altered throughout the procedure. Hence, this technique allows 
to significantly expand the set of possible hot-wire cutting geometries to certain 
double-curved surfaces, in particular sweep surfaces, which can be defined by 
the motion of a changing profile curve along two trajectory curves.

To efficiently control this multi-robotic cutting process, an advanced robotic 
control system is developed that monitors occurring forces during the manufac-
turing process and adapts the velocity of the cooperating arms accordingly. The 
dynamic change of these forces throughout the whole cutting procedure deter-
mine the absolute geometry of the surface being cut. To design those artefacts, 
it is crucial to predict the physical behaviour, as an evolving interplay between 
velocity, heat input, and reaction forces. As such, the project proposes an integral 
approach towards adaptive fabrication, design and simulation.
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Figure 1. Illustration of the SWC cutting procedure, two robotic arms are moving on different path curves shaping the 
wire through material resistance (Rust et al. 2016).

In the next section (Section 2) the process variables and relationships that 
guide the procedure as well as their integration into the simulation framework, 
and further its embedding into the computational design setup, is presented. 
Section 3 outlines comparative studies of four surface objects, which have been 
simulated, fabricated, and 3D scanned. The analysis focusses on simulated and 
measured process data and a quantitative geometrical comparison. Section 4 
discusses the results and addresses strategies to improve the combined simu-
lation framework and fabrication system. The conclusions and outlook are sum-
marized in Section 5.
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2.	Fabrication-Informed Design and 
Simulation Framework

The shape of the wire and therefore the resulting surface is determined by forces 
acting on it throughout the cutting procedure. The magnitude of these forces 
as well as the force direction do not only vary along the cut, but also along the  
engaged wire in the foam. Their calculation is dependent on multiple factors 
such as the current speed, the heat input, the actual wire shape and the mate-
rial properties of both the polystyrene and the hot-wire. In order to efficiently 
control the procedure and predict the resulting geometry, a digital model of the 
physical process has to be developed.

2.1	 Process Variables
To identify the relationships between the most influential variables, such as heat 
input Q1 [W/m], speed v [m/s], and resulting cutting force, a first series of cutting 
tests was performed. According to Ahn, Lee, and Yang (2003), Q1 and v can be con-
sidered together as the effective heat input Qeff [J/m2] (= Q1 / v). In these tests the 
tension force T was recorded in steady state conditions1, in which it levels off 
(Brooks 2009, 91). Additionally, the deflection2 of the wire about the mounting points 
was logged (using a custom Cardan joint tool head with magnetic encoder sen-
sors and a force sensor in the centre of the axes, see Figure 2 ). Thus, it was possi-
ble not only to map the tension force according to a given Qeff in an exponential 
model (Bain 2011, 176–78), but also the resultant of all forces acting perpendicular 
onto the wire (see Fig. 4). The coefficients ( a, b, c, resp. ā, b̄ ) were found by mod-
el fitting and are material dependent (properties of polystyrene and hot-wire3 ).
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left left

Figure 2. Cardan joint end-effector with axes (A, B), measuring angle α about axis A.
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Figure 3. Model of relationship between 𝑄𝑒𝑓𝑓 and tension 
force 𝑇 in the steady state per unit of engaged wire length 
(Rust et al. 2016).
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Figure 4. Model of relationship between 𝑄𝑒𝑓𝑓 and 
material force 𝐹 in the steady state per unit of engaged 
wire length.
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2.2	 Force Distribution

As the wire is exposed to variable forces, it deforms dependent on the magni-
tude, the direction, and the location of those forces, which ultimately influences 
the shape. For the fabrication process it is necessary to keep the wire always 
under a certain tension (based on empirical testing 2.0 N at each mounting point 
was defined as optimal value) to achieve a corresponding surface quality and, ul-
timately, to efficiently control the procedure.

To calculate the force distribution for a wire with a given shape of length s 
at a given moment t in time, it is discretized into n – 1 segments and n nodes, 
with constant edge length l [mm] ( l = li ) between the nodes. Furthermore, for 
each node i the unit tangent vector t̂i is calculated. Assuming that the unit force 
direction f̂i , the node speed vi and heat input Qi are known, the force vector fi 
acting on one individual node i can be estimated as follows

2.2 Force Distribution 
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Figure 5. Force distribution on the 𝑛𝑛 nodes of the discretized wire 

To calculate the force distribution for a wire with a given shape of length 𝑠𝑠 at a given moment 𝑡𝑡 in time, 
it is discretized into 𝑛𝑛 − 1 segments and 𝑛𝑛 nodes, with constant edge length 𝑙𝑙 [mm] (𝑙𝑙 = 𝑙𝑙=) between the 
nodes. Furthermore, for each node 𝑖𝑖 the unit tangent vector 𝐭𝐭= is calculated. Assuming that the unit force 
direction 𝐟𝐟=, the node speed 𝑣𝑣= and heat input 𝑄𝑄" are known, the force vector 𝐟𝐟= acting on one individual 
node 𝑖𝑖 can be estimated as follows 
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𝑘𝑘		(= 2 N), it is possible to calculate the resultant force 𝐹𝐹G$H, which is the magnitude of the sum of all 
force vectors from equation (3): 
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where F ( vi ,Qi )Qi)QqQqqqq is the force [N/mm] acting perpendicular to the engaged wire 
length according to equation (2) and ∥ t̂i × f̂i ∥ a ratio between 0 and 1 depending 
on the angle between fi and the edge tangent t̂i. Since the target tension force 
in the endpoints of the wire with tangents t̂ 0 and  t̂ n –1 is constrained to k (= 2 N), 
it is possible to calculate the resultant force Fres, which is the magnitude of the 
sum of all force vectors from equation (3):
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The simulation model builds upon the simplified physical models as described in Sections 2.1 and 2.2. 
It is employed to predict the physical process to improve the control of the fabrication and to predict the 
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As the wire is exposed to variable forces, it deforms dependent on the magnitude, the direction, and the 
location of those forces, which ultimately influences the shape. For the fabrication process it is necessary 
to keep the wire always under a certain tension (based on empirical testing 2.0 N at each mounting point 
was defined as optimal value) to achieve a corresponding surface quality and, ultimately, to efficiently 
control the procedure. 
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2.4 Simulation Model 

The simulation model builds upon the simplified physical models as described in Sections 2.1 and 2.2. 
It is employed to predict the physical process to improve the control of the fabrication and to predict the 
resulting geometry. 

The wire moving through the foam is a dynamic system. The boundary conditions are the path curves, 
respectively the synchronized positions on those curves, the size and position of the foam block as a 
volume, and a defined heat input 𝑄𝑄". As mentioned in Section 2.1, the forces 𝐅𝐅 (= matrix of all 𝐟𝐟=) in 
equation (4) are the steady-state forces that act at a certain moment. However, the shape is also 
dependent on the dynamic forces, and therefore the transient behaviour of the wire. The total forces 𝐅𝐅

(5)

(6)

(7)

(8)

According to X0 ( = [ Xuo , Xf ]), the edge length vector pk is calculated and the next 
force density vector q k+1 is estimated by (8), which is again inserted into equations 
(5) and (6) as diagonal matrix Qk+1 , and the linear system in (7) is solved to calculate 
the new coordinates Xk+1 . This process is continued until a certain tolerance is 
reached and the sum of all edge lengths matches the wire length s.
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Figure 7. a) Entry, b) steady and c) exit phase.
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Figure 8. Measured and simulated process data (speed and angle) from five cutting tests with same path curves but 
different heat input.
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2.4	 Simulation Model

The simulation model builds upon the simplified physical models as described in 
Sections 2.1 and 2.2. It is employed to predict the physical process to improve 
the control of the fabrication and to predict the resulting geometry.

The wire moving through the foam is a dynamic system. The boundary condi-
tions are the path curves, respectively the synchronized positions on those curves, 
the size and position of the foam block as a volume, and a defined heat input. As 
mentioned in Section 2.1, the forces F (= matrix of all fi ) in equation (4) are the 
steady-state forces that act at a certain moment. However, the shape is also de-
pendent on the dynamic forces, and therefore the transient behaviour of the wire. 
The total forces F– , used to compute the shape result from all forces that have  
occurred since the entry of the wire into the foam at t0 to the current timestamp tj. 
Therefore, a numerical integration is performed to integrate the forces over time.

The integration model for the simulation is a combination of the explicit 
Euler method with the trapezoidal rule and the predictor – corrector method 
(Heun’s method). The steady-state forces F are a function of the shape and the 
speeds v, F = F (v, X) acting at time tj. The step size is denoted by hj and initial 
forces F–0 = F (t0, X0). In the predictor step, starting from the current forces F–j , the 
next forces F    j+1 are estimated with the Euler method:
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from which the shape   ͠Xj+1 is calculated. In each iteration step, the speed   ̃vij+1 for 
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∼
dij+1 ( r factor, distances  

∼
dij+1 = ∥ Xij – Xij+1 ∥, Xij posi-

tion of node i at iteration step j ). The secant method is applied to find the factor 
r and the root to the nonlinear equation (11), so that forces F (∼ vj+1 ,    Xj+1 ) acting in 
the moment tj+1 comply equation (4).
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Figure 9. 1) Force vectors and curves from simulation, 2) force magnitudes coloured to visualize the differences and  
3) overlay of surface picture with simulated curves.

a) b) c)

Figure 10. Details from the overlay between simulated curves and surface picture, from a) entry, b) steady and c) exit phases.
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The step size hj is calculated as the reciprocal value to the solution r ( hj = dij / vij ), 
as the time between two iteration steps. After each iteration step, F–j+1 is down-
scaled, so that equation (4) is met and then multiplied by hj ; otherwise, the rela-
tion to the new force vectors hj+1 y ( vj+1 , Fj+1 ) in the next iteration step wouldn’t 
correspond.

2.5	 Physical Validation
A series of cutting tests were performed a) to validate the force distribution mod-
el as stated in (3) and b) to verify if the force density method and the calculated 
wire shapes are coherent with the physical shape. Multiple cuts were performed 
with different foam block sizes (300, 400, and 500 mm in width and 1200 mm in 
length), different heat inputs (50–85 [W/m]) and different path curves. The robots’ 
path curves were designed in such a way that all positions lay in the same hori-
zontal plane but have different distances to each other, generating three phases 
that are of interest to the analysis, due to expected distinctive differences in the 
force distribution:

a) Entry phase: the wire starts straight but the wire’s endpoints are contin-
uously moving towards each other
b) Steady phase: the wire is in shape and the endpoints of the wire are 
moving parallel to each other
c) Exit phase: the endpoints of the wire move off each other

Results from the simulation are node positions of the discretized wire, from 
which NURBS curves are created, force vectors (magnitude and direction), esti-
mated speeds and, according to the curves, also estimated angles of the wire’s 
deflection about the mounting points. As such, it was possible to compare the 
measured speeds and measured angles with the simulated speeds and angles 
(see Figure 8). To uncover the wire’s shape from the cut surface, it was illuminated 
from a sloped angle, the distortion of the picture taken was reversed, and the 
simulated curves were overlaid for comparison (see Figure 9).

The force magnitude colouring is an efficient analysis tool for the resulting 
surface and clearly exemplifies what happens inside the foam block. In the entry 
state, the outer nodes of the wire have to move faster than in the centre, produc-
ing higher forces in exit zones of the foam, while in the centre they reach zero 
force. Whereas in the steady zone, the force distribution is almost equal along 
the engaged wire and in the exit zone the reversed picture to the entry zone is 
visible, where the force in the exit zones are low, since the speed is lower than 
in the centre. Low forces can also be recognized on the physical surface, e.g. in 
the detail picture of (Figure 10, c ): Low or zero force means thermal cutting, more 
material melted, producing more rills.
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Figure 11. a) Edge curves, distribution of positions and wire length extension function, b) simulated curves and lofted 
surface thereof, c) extension of tangents to calculate path curves.
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Figure 12. Surface design of different edge curve settings and robotic path curves.
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Figure 13. Force magnitude visualisation on the surfaces.
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Figure 14. Estimated speed trajectories (black) and angles (blue, turquoise) for both robots.
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The results from the comparison of simulated process variables and mea-
sured process data of 20 cutting tests (as in Fig. 8) was very successful. Although 
the shape of the wire in the foam could just be visually compared, the sim-
ulated angle α, as the deviation of the wire about the mounting point had a 
normalized root-mean-square deviation (NRMSD) of just 0.06. The estimated 
speed trajectory also produced very good results and a similar NRMSD of 0.08 
in the cutting tests. Thus, these tests proved physical coherency for the force 
distribution equation (3).

2.6	 Computational Design
The procedure creates a specific set of double-curved surfaces. In order to de-
sign within this constrained design space, it is necessary to integrate design 
and simulation. The inputs for the simulation framework, as described in Section 
2.4, are the path curves, respectively the positions on the curves and a defined 
heat input. But there is a counter-intuitive relationship between designing these 
curves and the resulting surface. Therefore, the initial simulation setup was al-
tered to facilitate designing these surfaces: Instead of designing path curves, the 
edge curves of the surface on the foam block are designed, which are discret-
ized into a number of points. Further, a function is created, that defines the ad-
ditional length of wire to the distance between the points Paj and Pbj (see Fig. 11, a).

As such, the simulation calculates the forces for nodes that are constantly 
in the foam, and the fixed nodes are the defined positions on the edge curves. 
However, since the length from one iteration step to the other changes, the nodes 
and their forces have to be redistributed. After all node positions have been cal-
culated and NURBS curves have been created, a surface is lofted through the 
curves (see Fig. 11, b). To generate the path curves, a minimum distance to the foam 
block is defined and the simulated curves are extended at both ends in such a 
way that all curves have the same length (see Fig. 11, c).

This simulation framework was empirically tested and validated in a 2-week 
design and building workshop with students, which focussed on the development 
of novel façade typologies using bespoke cut polystyrene blocks as moulds. It 
was applied to design and generate a parametric model for the aggregation of 
robotically cut prototypes (Rust et al. 2016).

3.	Comparative Studies
The potential of the cutting technique can clearly be expressed in cutting freeform 
shapes. Therefore, four different sample surfaces were designed, simulated, fab-
ricated, and 3D scanned to provide an additional quantitative geometrical com-
parison between simulated surface and physical artefact.
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Figure 15. Fabricated objects 1) – 4), 400 x 900 mm (width x length).

900

40
0

0.0 42.0 mm

1) 2) 3) 4)

Figure 16. Simulated surfaces and point cloud data from the scanning process. The colours on the surface indicate the 
closest distance to the reconstructed mesh from the point cloud.

Figure 17. Surface detail.
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For the design of these surfaces, the edge curves and the wire length ex-
tension function, as input for the simulation, were designed in such a way to 
provide variability between moving directions and varying distances (see Figure 12). 
The estimated speed trajectories for the robots (see Fig. 14), calculated in the sim-
ulation, served as input for the fabrication procedure, which uses a combined 
feedback-feedforward control to tare the speed according to the force measure-
ment about this estimated speed trajectory. After the fabrication the surfaces 
(see Fig. 15) were scanned and per surface an average over 1 million scan points 
were registered. From these point clouds a surface was reconstructed (Poisson 
surface reconstruction) and the closest distance to the simulated surface was 
calculated (see Fig. 16).

4.	Results and Reflection
The comparison between simulated and measured process data, such as angles 
and speed trajectories, was similarly successful (speed: 0.14, angle α : 0.09, angle 
β : 0.06 NRMSD) as in Section 2.5. These results are clearly visible in the surface 
quality (see Fig. 17), proving a very good estimation of process variables and an ef-
ficient adaptive control. The maximum deviation in the geometrical comparison 
was 42 mm, which is still very high in terms of building tolerances. Areas of high 
deviation could be identified where the path curves show high curvature and at 
later moments in the procedure where deviations accumulate.

The simulation model is a simplification and an abstraction to the physical 
process. Factors that have not been integrated may have affected an accurate 
result. Amongst others, for example, the material force model (see Fig. 4) estimates 
the force under steady-state conditions, but actually the temperature of the wire 
is changing and constantly in transition states. These factors were assumed to 
have negligible influence, but small inaccuracies sum up along the process. Al-
though the developed computational simulation framework cannot predict the 
resulting physical surface with absolute precision, the results are visually iden-
tical, and therefore it can be employed for digital design explorations that are 
coherent with their fabrication.

5.	Conclusion and Outlook
A fabrication-informed design and simulation framework was presented and 
physically evaluated. It was demonstrated that the project’s combined design 
and fabrication methodology allows for the efficient fabrication of unique and 
differentiated double-curved surface geometries, which brings forward a new 
geometric capability to existing hot-wire cutting techniques. The particular set 
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of geometries imposes a constrained design space, which allows to reveal the 
specific tectonics of the process.

A coherency between digital and physical model was established. A further 
topic of research is to investigate methods to make these two models comple-
mentary, which is already partly achieved by correcting the estimated speed 
trajectory according to the force measurements. Thus, strategies to overcome 
the physical tolerances could either be the improvement of the simulation by 
integrating more physical behaviour or the improvement of the adaptive fabri-
cation control to not only regulate the speed, but also to dynamically adjust the 
path curves to fulfil the desired geometric target. This opens up the question to 
which extent a process needs to be modelled in advance to be able to efficiently 
control it, which means either adapting the digital model to the physical process 
control, vice versa, or even both. Material and process-informed design methods 
are inherently soft design methods. They do not necessarily describe exact ge-
ometry but the constraints and rules that create geometry. A subject of further 
research, which relates to the question above, will be the investigation of such 
a soft control in respect to architectural design.

Endnotes
1	 Steady-state conditions are reached at constant speed when the temperature and the cutting force level off.

2	 In these tests the deflection, respectively the angle α, was kept below 10 degrees to mainly induce perpendicular forces on the wire.
3	 The described experiments were performed with the foam swissporLAMBDA Vento (density: 15 kg/m³) and the material for the hot-wire was 

Kanthal A with a diameter of 0.15 mm.
4	 Since the measured data was oscillating in the beginning of the entry phase, the investigated phase was shifted thereafter. RMSD represents 

the sample standard deviation of the differences between the simulated values and measured values. NRMSD is the normalized RMSD ac-
cording to the range of the measured data (= maximum – minimum value).
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