
In this volume, the authors present a self-con-
tained introduction to discrete mathematics – the 
science of finite and countably infinite structures. 
In addition to taking a theoretical approach, they 
also include many practical exercises. The text  
covers a broad range of topics such as proposi-
tional logic, set theory as well as detailed treat-
ments of combinatorics and graph theory. This is 
complemented by an extensive introduction to 
modern cryptography, including the RSA crypto-
system, “postquantum” systems, and the number-
theoretic and algebraic prerequisites thereof.
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Chapter 0

What is Discrete
Mathematics?

0.1 What is “Mathematics”?

Of the two terms in the title of this book, “mathematics” is the more common
one. It is, however, not the easier one to define. Mathematics is a tradition, a
style of thinking and a way of dealing with problems in technology and natural
science, but also a mean to simply satisfy artistöıd aesthetic aspirations: Most
mathematicians describe their work as akin to a quest for beauty. Much has
been written about the ineffable elegance of some theorems or formulas (the
most famous specimen being Euler’s formula, eiπ + 1 = 0).

Not only are there various perspectives onto mathematics and how mathe-
maticians regard their work. There are profound philosophical questions about
the nature of mathematics that are still debated today. While it is held within
Platonism that mathematics is discovered, constructivists regard mathematics
as a rather artificial construct.

Lo
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Se
t

T
he

or
y

Mathematics

Figure 1: The pillars of Mathematics.
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0.2. WHAT IS “DISCRETE”?

Irrespective of the stand on the philosophical nature of mathematics, one
can single out two principal pillars of today’s mathematics: logic and set the-
ory.1 Logic determines how to reason within Mathematics, i.e., what is consid-
ered a valid proof. Set theory describes the objects we deal with. In Chapter 2,
we introduce propositional logic, in Chapter 3 set theory.
Example (Set theory). One of the definitions of the natural numbers relies
merely on nesting sets of the empty set.

0 := ∅
1 := {∅}
2 := {{∅} , ∅}
...

This exemplifies how set theory serves to define basic mathematical entities.

0.2 What is “discrete”?
With discrete we usually refer to finite or countably infinite sets. While it
is intuitively clear what is meant by finite (a set of elements we can label
with natural numbers 1, 2, 3, . . . , N), countably infinite needs slightly more
explanation. A set S is called countably infinite if one can match each element
in S with a unique natural number. Formally speaking, such a matching is a
function. This leads us to the following definition.

Definition 0.1 (Countable set). A set S is called countable if there exists a
one-to-one or injective2 function f : S → N. If f is also surjective3, then S is
called countably infinite.

To better understand the concept of countability, we consider two common
examples.
Example (The rational numbers are countable). Even though there seem to
be many more rational numbers than natural numbers, we can construct a
matching showing that the set is countably infinite. The rational numbers

1The picture of the two pillars provides a useful intuition. Albeit it being a simplified
and in some regard questionable perspective. For one, set theory comes itself with an
logical foundation that cannot be transferred to the logic pillar. Another doubt stems from
observation that we ourselves, including our senses and brains, appear in the object world
which we associated with the set-theory pillar. This bars us from a neutral perspective that
is taken in the picture leading us to a more involved perspective as implied by Gonseth’s
position “Logic is first of all a natural science.”

2This is to say, each element gets assigned a unique natural number, or in other words,
no natural number is matched to two different elements in S.

3That is, every natural number is matched to an element in S.
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can be associated with dots in a two-dimensional space, with the enumerator
on the x-axis and the denominator on the y-axis, or vice versa. We can then
number the dots in a spiral, as shown in Figure 2.

Figure 2: Matching the rational and the natural numbers

Example (The real numbers are not countable). One can prove by contra-
diction that there is no such matching for the real numbers. Indeed, let us
assume that we can assign a unique natural number to every real number in
the interval [0, 1]. If we represent the real numbers between 0 and 1 through
the binary representation, we obtain a list similar to the following:

1 0.0101011100110 . . .

2 0.1001100101001 . . .

3 0.0001011001010 . . .
...

...

Surprisingly, we can construct a real number N that is not contained in the
list: The ith digit of the binary representation of N is just the flipped value of
the ith digit of the ith real number:

1 0.0101011100110 . . .

2 0.1001100101001 . . .

3 0.0001011001010 . . .
...

...
constructed real number N = 0.111 . . .

The number we constructed differs from every element in the list and is, there-
fore, not contained in the list. This yields a contradiction with the initial as-
sumption that we could assign a unique natural number to every real number.
Thus, the size of the set of real numbers is strictly larger than the size of the
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0.3. WHY BOTHER?

set of natural numbers (in the sense that there is no bijective map in-between
the two):

|R| > |Q| = |N| .

0.3 Why bother?
What is the relevance of Discrete Mathematics? On the one hand, it is the
Mathematics that arises in daily life (including logic, the art of sound reason-
ing). On the other hand, as computers have only finite states, informatics is
in a sense applied Discrete Mathematics. In fact, at the end of this book we
will see that cryptography, the science of secure transmission of information
between computers, strongly relies on mathematical concepts. As such, one
could even argue that the importance of Mathematics is not only scientific,
but political.
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Chapter 1

Motivation

In this first chapter, we look into some introductory examples that give a flavor
of some of the topics, themes, and methods appearing in these notes.

1.1 Swapping knights
Consider a reduced chess board with two knights of each color as shown in
Figure 1.1. Is it possible to transform the configuration on the left into the
configuration on the right using regular knight moves (never having more than
one piece on a square, and no “taking”)?

The knights never reach the middle field. Furthermore, we can simplify the
situation by interpreting the “neighborship” of squares through knight moves,
and represent that in a graph (Figure 1.2, left side). In fact, such a graph can
be drawn in an even simpler way, as shown in the right side of Figure 1.2. Now,
we have a very adequate, because simple, model: Each possible field is then a
node in the graph, which is simply a cycle: The knights can move around the

3 M0m
2 0Z0
1 m0M

a b c

3 m0M
2 0Z0
1 m0M

a b c

Figure 1.1: Reduced chessboard with knights
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1.2. COMBINATORICS

a1
b1

c1

c2

c3
b3

a3

a2

a1
c2

a3

b1

c3
a2

c1

b3

Figure 1.2: Graphs representing the knights swapping problem.

loop, but not change their order. Thus the answer is that the transformation
is impossible.

This example contains already some basic mathematical principles and
tools of problem solving:

Modelling: Finding the right model for a problem is half the solution.

Graphs are often a good structure to model discrete problems.

Abstraction: Focus on the relevant, and get rid of the irrelevant (like in art).

1.2 Combinatorics
Imagine you want to create a necklace with p pearls, with p being a prime
number. You are given pearls in a different colors, and you have at least p
pearls for each color (so that you can make monochrome necklaces). How
many different necklaces can you make?

At first glance, the answer seems to be ap: One can choose the first pearl
in a different colors, i.e., in a different ways, and analogously for the others.
According to this reasoning, the number of necklaces would be the product of
the possible choices for each pearl, thus ap.

We are not quite satisfied yet: Since we can rotate some of the patterns
into others, these ap necklaces are in fact not distinct! Roughly speaking, we
have counted every pattern p times (once per possible rotation), so we should
divide the total number by p. But that is not entirely true: The one-colored
necklaces appear just once. It is important to note, however, that these are
the only exceptions (from being counted p times) since p is a prime number:
Periodic configurations like in Figure 1.3, where a certain pattern of 4-necklaces
is counted 2 times, cannot occur. The reason is that the number of times must
be a divisor of the length, which again we chose to be a prime number, having
as only divisors 1 and p.

Hence, to count the possible necklaces, we first consider all those having
pearls of at least two colors, which are ap − a, and divide them by the number
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© CC BY 4.0, https://vdf.ch/discrete-mathematics-e-book.html



Discrete Mathematics

Figure 1.3: Necklace with symmetries, p not being prime.

p of possible rotations. Then we add the monochrome necklaces:

N = ap − a

p
+ a .

A surprising consequence of this problem is that for a prime number p,
ap − a is divisible by p. This is called Fermat’s little theorem, and it plays
an important role in cryptography, namely, the public-key protocol RSA we
introduce later in the course.

1.3 Connections without crossings
Imagine a settlement with three houses and three plants (electricity, water,
gas), as shown in Figure 1.4. Is it possible to connect the three houses to each
of the plants without crossings in the connections?

This problem can again be turned into a graph, namely K3,3, as shown in
Figure 1.5. The question then becomes: Can the associated graph be drawn
such that edges (which need not be straight lines) merely meet in nodes? If
yes, the graph is called planar. An example of a planar graph is the “complete
graph with 4 nodes,” the K4 shown in Figure 1.6.

We ultimately want to show that the K3,3 is not planar. To do so, we first
try to better understand the properties of planar graphs.

Graphs and Polyhedra. There is an interesting analogy between graphs
and polyhedra. A polyhedron can be associated with a graph: Imagine the

⊗ ⊗ ⊗

Figure 1.4: Houses with connections. The third house cannot be
connected anymore without intersecting other connections.
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1.3. CONNECTIONS WITHOUT CROSSINGS

h1 h2 h3

p1 p2 p3

Figure 1.5: Graph representing the houses connection problem.

polyhedron was made out of elastic rubber. One could now remove one face
and press the remaining part into a plane: This yields a planar graph. Edges
of the polyhedron become edges of the graph, and corners turn into nodes of
the graph. Note that the face that was initially removed corresponds now to
the infinite region outside the graph (which as always considered as a proper
region). Figure 1.7 shows the graph corresponding to a cube.

Looking at different polyhedra (or at planar graphs), it becomes apparent
that the number of vertices (nodes) n, the number of edges e and the number
of faces f (regions) are closely related. Indeed, Euler’s polyhedron formula
states, for any polyhedron (and equivalently for planar graphs), we have

n − e + f = 2 .

Before looking at a sketch of the proof, we can apply the formula to the
graph in Figure 1.5 to answer our initial question. Indeed,

n − e + f = 6 − 9 + 13 = 10 �= 2 .

Sketch of proof of Euler’s polyhedron formula. To conclude the exam-
ple, we show that Euler’s formula holds true for all planar graphs (thus for the
one in Figure 1.5 too!). The proof consists of two parts: First, we show the
proposition for trees, which form a simpler class of graphs. Then we generalize
this to arbitrary planar graphs.

Figure 1.6: The graph K4 is an example of a planar graph.

14
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Figure 1.7: A cube can be transformed into a graph by removing
the bottom (turns into outer region) and pressing the top down
while spreading out the lower nodes.

Euler’s formula for trees. A tree is a connected graph without cycles; an
example is shown in Figure 1.8. It is obviously planar, and it contains only
one region, the infinite region around it.

Figure 1.8: A tree.

We show by induction (cf. Appendix ??) that Euler’s formula is always
satisfied for trees. If there is one node, then the formula is satisfied as n = 1,
e = 0, and f = 1. For the induction step, we assume that the formula holds
for a tree with n nodes and conclude that it holds for a tree with n + 1 nodes.
Adding a node requires to add an edge as well1. The resulting tree has e + 1
edges and n + 1 nodes, and therefore,

ñ︸︷︷︸
=n+1

− ẽ︸︷︷︸
=e+1

+ f̃︸︷︷︸
=1

= n − e + f = 2 ,

where the second equality holds due to the induction assumption.

General planar graphs. A general planar graph can be characterized by a
spanning tree and its dual graph: A spanning tree is a subgraph connecting all
nodes that is at the same time a tree. The dual graph to a given spanning tree
is again a tree, constructed by placing a node in each region and connecting

1Note that adding one node to a tree requires adding exactly one edge. Indeed, as there
is always already a path that connects two nodes of a tree, connecting the new node to the
tree through two (or more) edges creates a cycle.

15
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1.4. COLORING MAPS

them without crossing the spanning tree. An example of construction of the
spanning tree and of the dual graph is shown in Figure 1.9.

Figure 1.9: Example of a graph (composed by the white nodes
and by the black and red edges) with its spanning tree (composed
by the white nodes and only the red edges), and the dual graph
to this spanning tree (composed by the gray nodes and by the
blue, dotted edges).

The spanning tree has the same number of nodes as the original graph
ns = n, and one less edge than the nodes: es = ns − 1. The number of nodes
in the dual tree are the same as the number of regions in the graph, nd = f .
Furthermore, each edge of the graph is either part of the spanning tree or
crossed by one of the edges of the dual tree. Putting all this together, yields

e = es + ed = (ns − 1) + (nd − 1) = n − 1 + f − 1 = n + f − 2 ,

which is again Euler’s formula.

1.4 Coloring maps
An example of an application of Euler’s formula is to derive upper bounds
on the number of colors required to color maps of regions: Imagine a map
showing countries and their borders2. All two countries sharing a border are
considered neighbors. How many colors are needed to color the map in a way
that no neighbors have the same color? Three colors are not always enough,
as Figure 1.10 shows.

Again, the problem can be translated to planar graphs: Each country is
replaced by a node, and neighboring countries are connected by edges. So can
the nodes be colored with 4 colors requiring that neighbors are always colored
differently? The answer is yes, as a computer-aided proof showed some decades
ago. As that proof can never be verified directly by humans, there has been

2For simplicity’s sake, we assume countries to be in one piece, i.e., there are no exclaves
like Campione d’Italia.

16
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c1

c2

c3

c4

Figure 1.10: The figure on the left shows that it is possible to
arrange four countries such that they are all neighbors to one
another. Thus, we need at least four colors. The corresponding
graph, the K4 again, is shown on the right.

some argument on the validity of the proof. A shorter proof shows that 5 colors
are sufficient. In the following, we sketch a very simple proof for 6 colors.
Proposition 1.1 (6-Coloring). Six colors suffice to color a map (or equivalently
the nodes of a planar, non-multi graph).

Proof. We prove the proposition by induction.

Base case. For 6 or less nodes the proposition trivially holds.

Induction hypothesis. We assume that the proposition holds for planar
graphs with at most k nodes.

Induction step. We show that, given the induction hypothesis, the proposi-
tion holds also for graphs with k + 1 nodes. The plan is as follows:

• Eliminate a node v.
• Use the induction hypothesis to conclude that there exists a coloring

for the reduced graph.
• Find a suitable coloring for the eliminated node v.

While the first two points are clear and unproblematic, we ask whether
there is always a suitable coloring of v. One way to guarantee that is to
choose v such that it has only 5 neighbors (or less); then, there is always
one color possible (out of the 6). And indeed, we have the following fact,
following from the planarity of the graph.

Lemma 1.1. In every planar graph, there exists at least one node v with
at most 5 neighbors.

Proof of Lemma. By contradiction: Assume that the statement is false,
i.e., that each node has at least 6 neighbors. We derive a contradiction
to Euler’s formula.

17
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1.4. COLORING MAPS

As every node has at least 6 neighbors, and each edge connects exactly
two nodes, the edges and the nodes are related as follows:

2e ≥ 6n .

The number of regions and edges are related similarly: Every region is
bounded by at least 3 edges; every edge limits at most two regions, so:

2e ≥ 3f .

Putting this together, we obtain

n + f ≤ e

3
+ 2

3
e = e ⇒ n + f − e ≤ 0 .

This is in contradiction with Euler’s formula and completes the proof.

Since we can always find a node v with 5 or less neighbors to reduce
a graph with k + 1 nodes to a graph with k nodes, this completes the
induction step, and the proof of the proposition.

18
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1.5 Exercises
In the following, the reader can find some exercises to apply the basic con-
cepts shown in this chapter, including the proof techniques of induction and
contradiction (cf. Appendix ??).
Exercise 1.1 (Chess and Domino). A chessboard is composed by 8 × 8 small
squares, each of which exactly corresponds to half a domino stone. Clearly,
the board can now be covered by 32 domino stones. We now take away from
the chessboard two diagonally opposite corner squares (i.e., two squares that
share one vertex but no edge). Can the rest be covered by exactly 31 domino
stones? Give such a covering or proof that it cannot exist.
Exercise 1.2 (Rubik’s Cube in Walnut). You would like to saw a wooden cube
into 3 × 3 × 3 = 27 small cubes. The obvious solution requires six cuts.
Now, you are allowed to rearrange, after each cut, the obtained parts. More
precisely, you can staple them on top of each other, and then perform a straight
cut through the entire tower of pieces. Can the number of required cuts be
reduced in this way? In other words, can you find a procedure that allows for
cutting the cube with five cuts, or can you find an argument that such a thing
is impossible?
Exercise 1.3 (Shake Hands). Show that in any group of six (or more) people,
at least one of the following two statements is always true:

• There are three people who have never shaken hands with each other.

• There are three people who all already have shaken hands with each
other.

Try to solve this problem by modeling the situation as a graph.
Exercise 1.4 (Proof Techniques). This exercise aims to familiarize the reader
with two basic techniques for mathematical proofs: proofs by inductions and
proofs by contradiction (cf. Appendix ??).

1. Prove by induction that for all n ∈ N,
∑n

i=1 (2i − 1) = n2.

2. What is wrong with the following induction proof?
Statement: All people have the same hair color. We prove that the
following statement holds for all n: In a group of n people, all have the
same hair color.
Base case: For n = 1, this is obviously true. In a “group” of a single
person, clearly there is only one hair color.
Induction hypothesis: We assume that the statement is true for n.
Induction step: Consider a group of n + 1 people. Let A and B be
two different subsets of this group, each of size n. By the induction
hypothesis, both A and B must consist of people having the same hair
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color. Now, because of the people in both groups, the two hair colors in
the two groups must be identical, too. Consequently, all n+1 must have
the same hair color. QED.

3. Prove by contradiction that 3
√

2 is not a rational number.

4. Prove that there exist irrational numbers s and t such that st is rational.

Hint. Start by considering the number
√

2
√

2 and distinguish different
cases.

Exercise 1.5 (Sylvester – hard). Consider n points in the plane with the fol-
lowing property: Whenever we draw a line connecting two of the points, then
at least one additional point must lie on the line. Prove that in this case, all
points must lie on one line.
Hint. Try to prove it by contradiction: Assume that the statement is false
(with the goal of deriving a contradiction from it). If the assumption is false,
then there must be points that do not lie on the line connecting some other
points. Consider now the one point that lies the closest to such a line without
actually lying on it. Do not forget our assumption: On every connection, there
is a third point!
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Chapter 2

Propositional Logic

In this chapter, we discuss propositional logic (PL), a branch of logic con-
cerned with propositions and, in particular, how composed propositions can be
obtained from atomic ones, and how their truth value is determined by the one
of their parts.

The chapter follows closely the book by Uwe Schoening : “Logic for Com-
puter Scientists.”

2.1 Definitions
Logic has been described as the realm of true and false in the same sense that
ethics is the one of good and bad or aesthetics of beautiful and ugly.
Definition 2.1 (Proposition, Atom, Connective). A proposition is a sentence,
expression, or formula which is either true or false, i.e., is truth-definite. An
atom or atomic proposition is a basic proposition that is not composed of
other propositions. A connective links (generally) two propositions to a new
proposition.
Example 2.1. The examples show how atoms (or atomic proposition) can be
connected by connectives to form a composed proposition:

If it rains , then the streets are wet .

atom atom

connective

composed proposition

The following proposition connects three atoms A, B, C:
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When the rooster crows on the dungheap ,

then the weather changes or remains the same .

A

B C

The conditioning atom is without effect as the second proposition is always
true. The atom C is just the negation of the atom B: C = ¬B. Therefore
C ∨ B = (¬B) ∨ B = true. Such a proposition that is always true due to its
form is called a tautology.

Propositions can be confusing — and lead to logical paradoxa or anti-
nomies — when they refer to themselves. The following is a proposition, and
it is false:

This is not a proposition .

This one sounds like, but does not seem to be, a proper proposition as one
can, in principle, not decide whether it is true or false:

This proposition is false .

The latter example makes think of the “liar antinomy”: Epimenides from
Crete says: “All Cretans are liars.” So are they?

2.1.1 Connectives as truth functions
A connective is a function applied to propositions (or their truth values),
yielding another. They can be fully characterized by a truth table. As truth
can take one of two values (true and false), just like bits in a computer, there
is a close relation between connectives and logical gates (the basic building
blocks of a processor).

Here are some examples of connectives.

Conjunction. The AND gate is the connective that returns true if and only
if both arguments are true:

A B A ∧ B
true true true
true false false
false true false
false false false
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Negation. The NOT gate returns the opposite of the input truth value:

A ¬A
true false
false true

Together, the AND and the NOT gates allow for realizing any other gate: This
set of gates is universal. Interestingly, just one single gate — the NAND — is
already universal all by itself.

NAND (NOT AND). The two gates above can be combined into a new
gate, the negated AND gate, short NAND gate:

A | B := ¬(A ∧ B) .

The truth table is the inverted AND table:

A B A | B
true true false
true false true
false true true
false false true

To get an idea of how the NAND gate can serve to realize all other gates, one
obtains the NOT gate by using A for both inputs: ¬A ‘ = ’ A | A. One can
now use this NOT gate and the NAND to obtain an AND gate, and so on.
Example 2.2. NAND is used when considering two mutually exclusive options,
that might be false at the same time:

• A = “This polygon has exactly 4 edges.”

• B = “This polygon has exactly 5 edges.”

• A|B = “The number of edges of this polygon is NOT equal to 4 AND 5
at the same time.”

Inclusive disjunction. The OR gate returns true whenever at least one of
the two inputs is true:

A B A ∨ B
true true true
true false true
false true true
false false false
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Exclusive disjunction. The exclusive OR or XOR gate returns true if and
only if exactly one of the two arguments is true:

A B A ⊕ B
true true false
true false true
false true true
false false false

⇔

A B A ⊕ B
1 1 0
1 0 1
0 1 1
0 0 0

The XOR symbol resembles a plus sign for a reason: If we replace false by
zero and true by 1 — a notation we adopt from now on — then the XOR is
just addition modulo 2.
Example 2.3 (Disjunction). In everyday language both inclusive and exclusive
disjunction are generally expressed by or.

• A = “Applicants for this job should have a PhD.”

• B = “Applicants for this job should have teaching experience.”

• A ∨ B = “Applicants for this job should have a PhD OR teaching expe-
rience.” (a person having both would obviously not been discarded)

It is possible to clarify that one means an exclusive disjunction by using “ei-
ther. . . or.”

• A = “Billy is a cat.”

• B = “Billy is a dog.”

• A ∨ B = “Billy is EITHER a cat OR a dog.”

Logical equivalence. This is the “inverse” of the XOR, returning true (1)
if and only if the arguments have the same truth value:

A B A ↔ B
0 0 1
0 1 0
1 0 0
1 1 1

We have
A ↔ B ‘ = ’ ¬(A ⊕ B) ;

we leave it open for the moment in which exact sense they are “equal” (as
strings, they are not).
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Implication. The implication from A to B is true whenever the fact that A
is true unavoidably means that also B is true. Here, A is called the premise
and B the conclusion.

A B A → B
0 0 1
0 1 1
1 0 0
1 1 1

(2.1)

Conversely, A → B does not mean that if B is true then also A is:

A → B ‘ �= ’ B → A :

Implication is asymmetric. Also, it is not true that negations ¬ can simply be
added:

A → B ‘ �= ’ (¬A) → (¬B) .

However, the contraposition law always holds:

A → B ‘ = ’ (¬B) → (¬A) .

This asymmetry requires that one be particularly careful how to prove a
statement: The line of reasoning cannot simply be inverted. (If an obvious
truth, for instance “0 = 0,” is shown to imply a statement S, then S is proven.
If, on the other hand, S is shown to imply “0 = 0,” this is actually no valid
argument for the truth of S.)

However, if both implications hold, then we obtain equivalence:

(A → B) ∧ (B → A) ‘ = ’ A ↔ B .

It is possible to prove statements of equivalence by separately showing both
implications.

What is the meaning of ‘=’? The expressions on the right and on the left-
hand sides of the “equalities” were not the same on the level of strings: They
are syntactically different. However, their truth value is always the same, for
every truth assignment of the involved atoms: they are semantically equivalent.
We write ≡ instead of = from now on.

Let us look at syntax and semantics of propositional logic separately.

2.2 Syntax of propositional logic
In syntax (of logic as well as of a programming language), we specify what a
correct string (formula, program) is, independently of its respective “meaning”
or “function.” The following recursive definition specifies what is a correct
formula: The atomic formulas are, and the ways are given in which formulas
can be composed.
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Definition 2.2 (Syntax). Syntactically correct formulas ED with a set of
atoms D := {A, B, C, . . .} are

• atomic formulas in D;

• if f and g are syntactically correct formulas, then also (¬f), (f ∧ g) and
(f ∨ g) are syntactically correct.

These are all syntactically correct formulas.

In short, the only permitted formulas for now are atoms, as well as compo-
sitions using ¬, ∧, and ∨. Note that the other connectives listed above are not
explicitly part of the syntax, but are in fact implicitly included: We already
mentioned that the “allowed ones” are universal.

We visualize Definition 2.2 in a syntax diagram (see Figure 2.1).

D

ED

ED ED

ED ED

ED :
( ¬ )

( ∧ )

( ∨ )

Figure 2.1: The syntax diagram for propositional logic.

Example 2.4. The following are syntactically correct formulas. (Note that no
brackets can be left away so far, according to the definition.)

• A

• (¬A)

• (A ∧ B)

• (A ∨ B)

• (¬(A ∧ B))

• F := (((A ∧ B) ∨ (¬C)) ∧ (A ∨ B))

The (structure of the) latter formula, F , can be visualized in a graph called
a syntax tree (see Figure 2.2). Here, subtrees correspond to partial formulas
(substrings which are formulas in their own right). The partial formulas of F
are
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∧

∨

∧

A B

¬

C

∨

A B

Figure 2.2: The syntax tree of the formula F .

{A, B, C, (A ∧ B), (¬C), ((A ∧ B) ∨ (¬C)), (A ∨ B), F}

According to our definition, the following formulas are not correct (as
brackets are missing):

• A ∧ B ∧ C

• A ∧ B ∨ C

Whether it makes sense to allow for omitting these brackets or not depends
on whether the truth value depends on how the brackets are placed. Thus,
only “truth calculus” semantics can decide such questions.

2.3 Semantics of propositional logic
Definition 2.3 (Assignment). A truth assignment A : D → {0, 1} is a func-
tion that assigns a truth value to every atom. This truth function is extended
to all syntactically correct formulas by simply evaluating the formula, based
the truth values for its atoms and the connectives used.

Example 2.5 (Truth Assignment and Function). Let us consider a set of three
atoms A, B, C. A truth assignment is, for instance,

A : A �→ 0
B �→ 1
C �→ 0.

The function is extended to formulas: For F = (((A ∧ B) ∨ (¬C)) ∧ (A ∨ B))
(as above), the assignment yields A(F ) = 1, as can be easily seen using the
given syntax tree, evaluating bottom-up.
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Definition 2.4 (Semantic Behavior / Truth Vector). The semantic behav-
ior or truth vector of a proposition is the list of truth values for all possible
assignments.

This behavior or vector can be expressed completely in a truth table.

Example 2.6. For the formula F in the example above, we can evaluate the
tree bottom-up. If we wish a full list of the results for all possible inputs, it
is more efficient to evaluate the subformulas and write the result below the
connective:

(((A ∧ B) ∨ (¬ C)) ∧ (A ∨ B))
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 1 0 1 1
0 0 1 0 0 1 0 0 1 1
1 0 0 1 1 0 1 1 1 0
1 0 0 0 0 1 0 1 1 0
1 1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1 1 1

(2.2)

We say that two formulas are semantically equivalent if they yield the
same output on the same input. Equivalent formulas can be exchange against
each other in any logical context; they are “logically the same.”

Definition 2.5 (Semantic Equivalence). Two formulas are semantically equiv-
alent if they have the same truth value for all assignments of their atomic
formulas. We write F ≡ G or F ⇔ G.

Example 2.7 (Equivalent Formulas). The following two formulas are equivalent
and yield the same red columns:

(A ∨ B)
0 0 0
0 1 1
1 1 0
1 1 1

( ¬ ((¬ A) ∧ (¬ B)))
0 1 0 1 1 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 1 0 0 1

Thus,

A ∨ B ≡ ¬((¬A) ∧ (¬B)) .

We introduce the “truth values” 0 and 1 as syntactically correct formulas,
abbreviating (the shortest) unsatisfiable formula and tautology, respectively.
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Definition 2.6. We define the formulas

0 :≡ (A ∧ (¬A)) ,

1 :≡ (A ∨ (¬A)) .

Definition 2.7 (Tautology, Unsatisfiable Formula). If a formula F is seman-
tically equivalent to 0, F ≡ 0, then F is called unsatisfiable.

If a formula F is semantically equivalent to 1, F ≡ 1, then F is called a
tautology.

Similarly, we introduce additional connectives as abbreviations: For in-
stance, the XOR:

A ⊕ B :≡ ((A ∧ (¬B)) ∨ ((¬A) ∧ B)) .

This is the equivalence connective:

A ↔ B :≡ (A ∧ B) ∨ ((¬A) ∧ (¬B)) .

Semantic equivalence is an equivalence relation: It partitions the set of all
formulas into disjoint subsets, groups of semantically equivalent formulas, the
equivalence classes. It structures the set of all syntactically correct formulas
as visualized in Figure 2.3. For instance, the formulas (B ∨ (¬B)), (¬(¬A) ∨
(¬(¬(¬A)))) are all equivalent (to 1, actually) and, therefore, in the same
equivalence class: The class of all tautologies.

ED

1

contains all tautologies

0

contains all unsatisfiable formulas

Figure 2.3: Equivalence classes in the set of all syntactically cor-
rect formulas ED.
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Number of equivalence classes. The set of all syntactically correct for-
mulas ED is infinite. For instance, it contains the sequence of formulas A,
(¬A), ((¬(¬A)), etc. The number of equivalence classes, however, is finite (if
the number of atomic formulas is). If we assume, for instance, that there are
26 atomic formulas D = {A, B, C, . . . , Z}, then there are 226 different input
configurations (or lines if we wrote it as in 2.2). As each line specifies an entry
(0 or 1) of the truth vector, there are 2(226) different semantic behaviors, i.e.,
equivalence classes: a finite but very large number.

We express the semantic equivalence of two formulas through a property
of one single formula.

Theorem 2.1. Two formulas F and G are semantically equivalent, i.e., F ⇔
G, if and only if the formula F ↔ G is a tautology.

Note that ↔ connects F and G syntactically, whereas ⇔ connects the two
semantically.

Proof. The formula F ↔ G ≡ (F ∧ G) ∨ ((¬F ) ∧ (¬G)) is a tautology if and
only if F and G have the same truth values for all assignments. Thus, it is a
tautology if and only if F and G are semantically equivalent.

Example 2.8 (Logical Laws). The following list contains important examples
of semantic equivalences:

• Idempotence
(F ∧ F ) ≡ F (F ∨ F ) ≡ F

• Symmetry

(F ∧ G) ≡ (G ∧ F ) (F ∨ G) ≡ (G ∨ F )

• Associativity

(A ∧ (B ∧ C)) ≡ ((A ∧ B) ∧ C) (A ∨ (B ∨ C)) ≡ ((A ∨ B) ∨ C

• Absorption

((F ∧ G) ∨ F ) ≡ F ((F ∨ G) ∧ F ) ≡ F

• Distributivity

(F ∧(G∨H)) ≡ ((F ∧G)∨(F ∧H)) (F ∨(G∧H)) ≡ ((F ∨G)∧(F ∨H)

• de Morgan

(¬(F ∧ G)) ≡ ((¬F ) ∨ (¬G)) (¬(F ∨ G)) ≡ ((¬F ) ∧ (¬G))
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• Double negation
(¬(¬F )) ≡ F

The de Morgan laws give rise to a duality in the set of laws: Take any law,
swap the AND and OR, and you get another valid law.

Note that there is also distributivity for AND and XOR:

A ∧ (B ⊕ C) ≡ (A ∧ B) ⊕ (A ∧ C) .

This does, however, not hold if the two connectives are swapped (just as in
arithmetic, there is a distributive law: a(b + c) = ab + ac, but not a + bc =
(a + b)(a + c) in general). In fact, XOR and AND can be sees as addition and
multiplication of logic.

Simplification of notation. So far, we have been sticking closely to the
syntax permitted by Definition 2.2. We introduce some simplifications, moti-
vated by the equivalences above:

• We allow all connectives introduced in the first part (⊕, →, ↔), as they
are equivalent to formulas with the basic connectives.

• If brackets do not change the truth behavior, they can be dropped. For
instance, because of associativity, we can allow A ∧ B ∧ C. In general,
we write

n∧
i=1

Ai ≡ A1 ∧ A2 ∧ . . . ∧ An ,

n∨
i=1

Ai ≡ A1 ∨ A2 ∨ . . . ∨ An .

• We introduce the following priority rules (operator precedence):
¬, (∧, ∨), (⊕, ←, →, ↔). Again brackets can be dropped and the formula
is read in accordance with these priority rules. For instance,

A ∧ ¬B → C

stands for
(A ∧ (¬B)) → C .
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2.4 Normal forms
Given a syntactically correct formula, one obtains its semantic behavior by
writing down the truth table. Is it conversely possible to construct a syntac-
tically correct formula that reproduces any given truth vector? The following
example shows how this can be done.
Example 2.9. Let us consider the truth table with the atoms A, B, and C. We
want to find a composed formula F that produces the truth vector in the last
column:

A B C F
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

One way to construct a formula F with the desired semantics is to consider
all the rows that have to be true: The formula can express that “we are” in
row 3, row 4, row 5, row 6, or row 8. “To be in” a certain row means that the
atoms (or their negation in case of ¬) are all true:

F ≡ (row 3) ∨ (row 4) ∨ (row 5) ∨ (row 6) ∨ (row 8)
≡ (¬A ∧ B ∧ ¬C) ∨ (¬A ∧ B ∧ C)

∨ (A ∧ ¬B ∧ ¬C) ∨ (A ∧ ¬B ∧ C) ∨ (A ∧ B ∧ C)

We call this disjunction of conjunctions (OR or ANDs) a Disjunctive Normal
Form (DNF). Applying the logical rules above, we can reduce the formula to
a simpler, semantically equivalent one: Employing associativity we obtain

(¬A ∧ B ∧ ¬C) ∨ (¬A ∧ B ∧ C) ≡ (¬A ∧ B) ∨ (¬C ∧ C)︸ ︷︷ ︸
≡0

≡ ¬A ∧ B .

We obtain

(¬A ∧ B ∧ ¬C) ∨ (¬A ∧ B ∧ C)︸ ︷︷ ︸
≡¬A∧B

∨ (A ∧ ¬B ∧ ¬C) ∨ (A ∧ ¬B ∧ C)︸ ︷︷ ︸
≡A∧¬B

∨(A ∧ B ∧ C)

≡ (¬A ∧ B) ∨ (A ∧ ¬B)︸ ︷︷ ︸
≡A⊕B

∨(A ∧ B ∧ C) ≡ A ⊕ B ∨ A · B · C

using multiplication as an abbreviation of the AND.
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A second approach to finding a formula F is to consider the false rows:
We are not in row 1 and not in row 2 and not in row 7. Each of these rows is
false if any of the subformulas is false. Thus, we connect the atoms (or their
negations) by ORs:

F ≡ ¬(row 1) ∧ ¬(row 2) ∧ ¬(row 7)
≡ (A ∨ B ∨ C) ∧ (A ∨ B ∨ ¬C) ∧ (¬A ∨ ¬B ∨ C) .

This conjunction of disjunctions (AND of ORs) is called a Conjunctive Normal
Form (CNF). Using associativity, we simplify again, to

F ≡ (A ∨ B) ∧ (¬A ∨ ¬B ∨ C) ,

where we used the distributive property twice to obtain the second and third
equivalences. The DNF and CNF obtained for F are syntactically different
but, due to construction — we started out from the same truth vector —
semantically equivalent.

DNF

((A ⊕ B) ∨ ((A ∨ B) ∧ C))
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 1 1 0 1 1 0 0
0 1 1 1 0 1 1 1 1
1 1 0 1 1 1 0 0 0
1 1 0 1 1 1 0 1 1
1 0 1 0 1 1 1 0 0
1 0 1 1 1 1 1 1 1

CNF

((A ⊕ B) ∨ ((A ∧ B) ∧ C))
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 1 1 0 0 1 0 0
0 1 1 1 0 0 1 0 1
1 1 0 1 1 0 0 0 0
1 1 0 1 1 0 0 0 1
1 0 1 0 1 1 1 0 0
1 0 1 1 1 1 1 1 1

Figure 2.4: Truth tables of the DNF and CNF from Example 2.9.

We define the normal forms CNF and DNF.

Definition 2.8 (Literal). If A ∈ D is an atom then A and ¬A are called
literals: A literal is an atom or a negated atom.

Definition 2.9 (Conjunctive Normal Form). A formula F is in Conjunctive
Normal Form (CNF) if there exist literals Li,j such that

F =
n∧

i=1




mi∨
j=1

Li,j




= (L1,1 ∨ L1,2 ∨ . . . ∨ L1,m1)
∧ (L2,1 ∨ . . . ∨ L2,m2)
∧ . . .

∧ (Ln,1 ∨ . . . ∨ Ln,mn) .
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Definition 2.10 (Disjunctive Normal Form). A formula F is in Disjunctive
Normal Form (DNF) if there exist literals Li,j such that

F =
n∨

i=1




mi∧
j=1

Li,j


 .

Note that, in these definitions, we put equalities (=), not merely equiva-
lences (≡): The normal forms are also syntactic notions.

2.5 Models and semantic conclusion
Physics asks: In our world, what formulas are true? In logic, we often take
the opposed stand: For a given formula, what is the set of worlds in which it
is true. Such a world is called a model for the formula; it makes it true. In the
case of propositional logic: For a given formula, what truth assignments make
it true?

Definition 2.11 (Model). Let F be a formula and A an assignment which
renders F true. Then A is a model of F . We write

A � F .

Example 2.10. Let us consider the formula F and its truth table:

F = (A ∧ B) → C
0 0 0 1 0
0 0 0 1 1
0 0 1 1 0
0 0 1 1 1
1 0 0 1 0
1 0 0 1 1
1 1 1 0 0
1 1 1 1 1

Only the assignment in the seventh row is not a model of F .
Some of the properties of models are the following:

• Two formulas F and G are semantically equivalent, i.e., F ≡ G, if and
only if they have the same models:

A � F iff A � G

• A formula F is a tautology if and only if every assignment A is a model
for F (F is true in any “thinkable” world).
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• A formula F is unsatisfiable if and only if there it has no model.

Based on the notion of models, we define the one-sided variant of semantic
equivalence.

Definition 2.12 (Semantic conclusion). G is a semantic conclusion of F1, . . .,
Fn if every model A of all the Fi is also a model of G. We say that F1, . . . , Fn

semantically implies G. We write {Fa, . . . , Fn} � G or {Fa, . . . , Fn} ⇒ G.

Semantic conclusion is the one-sided variant of semantic equivalence (they
relate just like → and ↔ on the syntactical level). In particular, two formulas
F and G are semantically equivalent if and only if F is the semantic conclusion
of G, and vice versa.

Note that the symbol � has two meanings: It indicates semantic conclusion
as well as models.
Example 2.11. Let us take a closer look at the following set of formulas:

{A, A → B, B → C} .

Do they semantically imply C? The only model of the first formula is the
assignment A0(A) = 1. The models of the second are (corresponding to the
rows 1,2 and 4 in 2.1)

A1 : A �→ 0, B �→ 0
A2 : A �→ 0, B �→ 1
A3 : A �→ 1, B �→ 1 ,

and similarly for the last formula:

A4 : B �→ 0, C �→ 0
A5 : B �→ 0, C �→ 1
A6 : B �→ 1, C �→ 1 .

So only the assignment

Ã : A �→ 1, B �→ 1, C �→ 1

is a model that renders all formulas true, i.e., a common model for all formulas.
Since this is also a model for the atomic formula C we obtain

{A, A → B, B → C} � C .

The semantic conclusion is related to the syntactical implication just as
semantic to syntactic equivalence (Theorem 2.1):
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Theorem 2.2. A set of formulas {F1, . . . , F2} semantically implies a formula
G — {F1, . . . , Fn} � G — if and only if the formula

∧n
i=1 Fi → G is a tautol-

ogy.

We carefully distinguish between the syntactical and the semantic levels:
The expression {F1, . . . , Fn} � G relates the set of formulas {F1, . . . , Fn} se-
mantically with the formula G. The expression

∧n
i=1 Fi → G connects the

two syntactically and yields another syntactically correct formula. Only by
demanding this formula to be a tautology does a semantic criterion emerge.

Proof. The implication A → B is equivalent to ¬A ∨ B. Therefore,
n∧

i=1
Fi → G ≡ ¬(F1 ∧ F2 ∧ . . . ∧ Fn) ∨ G

≡ ¬F1 ∨ ¬F2 ∨ . . . ∨ ¬Fn ∨ G .

This formula being a tautology means: If an assignment renders all Fi true
— A(Fi) = 1 ∀i — then the assignment must also make G true. But that is
exactly the definition of a semantic conclusion.

Remark 1. A formula F is a tautology if and only if F is a conclusion of 1, i.e.,
1 � F : F is a tautology if and only if the implication 1 → F is a tautology.

A formula F is unsatisfiable if and only if 0 is a conclusion of F , i.e., F � 0:
F is unsatisfiable if the implication F → 0 is a tautology.

2.6 Proof theory of propositional logic
The goal of a proof theory is to decide semantic questions such as

• Is F a tautology?

• Is F unsatisfiable?

• Does {F1, . . . , Fn} � G hold?

Let us first of all observe that this is, in the end, always the same type of
question, which can be made to boil down to the question whether a certain
formula is a tautology or not. Let us thus look at different flavors of that
particular question.
Example 2.12 (Tautology Problem of CNF). Given a formula F in CNF, how
can we decide whether it is a tautology? Since F is in CNF, it is a conjunction
(AND) of subformulas Fi, which are themselves disjunctions (OR) of literals:

F = (L1,1 ∨ . . . L1,m1)︸ ︷︷ ︸
=:F1

∧ . . . ∧ (Ln,1 ∨ . . . Ln,mn
)︸ ︷︷ ︸

=:Fn

= F1 ∧ . . . ∧ Fn .
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Observe first that a conjunction of Fi’s is a tautology if and only of all the
Fi are. Second, the Fi’s are tautologies if at least one atom appears twice
therein, once unnegated and once negated. (Otherwise, a violating assignment
can always be found.)
Example 2.13 (Tautology Problem of DNF). Can we derive a similarly simple
criterion for a DNF-formula F :

F =
n∨

i=1




mi∧
j=1

Li,j


 = F1 ∨ . . . ∨ Fn ?

Is F is a tautology or not? Unfortunately, the problem does not “localize”
(reduce to similar questions independently for the subformulas) in the same
sense: The relation between subformulas is important here. Clearly, what can
always be done is a truth table. However, the size of that grows exponentially
with the number of different atoms in the formula.

Relating DNF and CNF. Is it easy to change from one normal form to
the other, for a formula F? No, but what we can do is to obtain the negation
of F in the other normal form in which F itself is given, using de Morgan’s
law:

¬F = ¬
n∨

i=1




mi∧
j=1

Li,j


 ≡

n∧
i=1


¬

mi∧
j=1

Li,j




≡
n∧

i=1




mi∨
j=1

¬Li,j


 .

As F being a tautology is equivalent to ¬F being unsatisfiable, the satisfi-
ability problem for a DNF can be solved analogously to the tautology problem
of a CNF: They are both simple. The other problems (satisfiability for CNF,
tautology for DNF, change from CNF to DNF and vice versa for some F )
seem hard. Let us look at this is some more detail.

Comparison of computational hardness. Let us compare the hardness
of the tautology problems for CNF and DNF, respectively: If F is given in
CNF, one merely has to check the double occurrence of an atom (once positive,
once negated) in each of the subformulas. This can be done in essentially linear
time, i.e., the number of steps being upper-bounded by a linear function in the
length of the formula), simply going through the formula. On the other hand,
in the case of F being a DNF, one has to write down the entire truth table,
containing 2l rows. The number of computational steps is thus exponential in
the length l, growing much faster. In a sense. the two problems are opposite
extremal cases of hardness. Let us look at that in some more depth.

37

© CC BY 4.0, https://vdf.ch/discrete-mathematics-e-book.html



2.6. PROOF THEORY OF PROPOSITIONAL LOGIC

2.6.1 Short excursion into complexity theory

all computational problems

P

NPC

NP

Figure 2.5: The set of computational problems is divided into
classes of different complexity.

Complexity theory is about classifying computational problems by their
computational difficulty. The set P contains all problems that can be solved
in polynomial time, i.e., the number of computational steps being at most a
polynomial function (such as x, x2, 20x100, . . . ) of the input size. P is a
subset of NP, containing all problems for which one can verify a given solution
in polynomial time, whereas the solution may not be found in polynomial time.

A subset of NP are the NP-complete problems (NPC): Problems in NPC
are as hard as any other problem in NP. That means that any problem in NP
can be reduced to any problem in NPC in polynomial time. Consequently, any
problem in NPC can be reduced to another problem in NPC in polynomial
time. This means that NPC problems can be used as indicators of simplicity
for all NP problems: If you can solve one NPC problem in polynomial time,
then you can solve all of them. (In fact, you have then shown P=NP=NPC,
which would be an overly surprising result that makes you very famous; most
people believe that the three classes P, NP, and NPC are all different from
each other — no one has proven that so far, however.)
Example 2.14 (Elements of P). P contains

• the tautology problem for CNF;

• the (un)satisfiability problem for DNF.

Even more, these decision problems can be solved not only in polynomial
but even in linear time; they are among the simplest even among P problems.
Example 2.15 (Elements in NPC). NPC contains

• the tautology problem for DNF;
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• the satisfiability problem for CNF

• the problem to find a semantically equivalent DNF for a given CNF, and
vice versa.

The last follows from the first two: If we could find a G in CNF for any F in
DNF with F ≡ G in polynomial time, we could solve the tautology problem
for a DNF in polynomial time by first turning it into a CNF and then applying
the criteria above.

Real-life problems? Are problems in real life hard? Yes, they are, as one
can see in the following example.
Example 2.16 (Sudoku). Sudoku is an NPC problem, as it boils down to the
satisfiability of a CNF: As one has to find a solution satisfying all conditions
on the rows, columns, and subboxes, it is a problem of the form

(condition 1) ∧ (condition 2) ∧ . . . (2.3)

Each of these conditions can be satisfied in different ways:

condition 1 = way 1 ∨ way 2 ∨ way 3 ∨ . . .

This is a CNF; to find a solution is the same as proving satisfiability. The
satisfiability problem for a CNF is in NPC; so is Sudoku.

Actually, this is a common structure of real-life problems, such as flight
plans or schedules. Usually there is a number of necessary conditions yielding
a formula of the form 2.3. Each condition can be met in various ways, so the
subformulas are disjunctions. Thus, one is usually looking for an assignment
satisfying a CNF.

2.7 The resolution calculus
Although there is no hope to solve satisfiability (SAT) for CNF formulas effi-
ciently always, we discuss here a calculus that can do it often: Resolution.
Example 2.17. The task is to prove the following semantic conclusion

{A, A → B, B → C, C → D, D → E} � E .

Employing Theorem 2.2, the task turns into showing that the formula

(A ∧ (A → B) ∧ (B → C) ∧ (C → D) ∧ (D → E))︸ ︷︷ ︸
=:F

→ E
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{A} {¬A, B} {¬B, C} {¬C, D} {¬D, E} {¬E}

{B}

{C}

{D}

{E}

�

Figure 2.6: Deducing a contradiction from the clauses.

is a tautology. Remember F → E = ¬F ∨ E. We turn that tautology problem
into the unsatisfiability problem for

¬(¬F ∨ E) ≡ F ∧ ¬E .

Explicating F yields a CNF:

A ∧ (¬A ∨ B) ∧ (¬B ∨ C) ∧ (¬C ∨ D) ∧ (¬D ∨ E) ∧ ¬E .

The subformulas of a CNF are often called clauses and written as sets, con-
taining the literals of the clause:

{{A} , {¬A, B} , {¬B, C} , {¬C, D} , {¬D, E} , {¬E}} .

We now show by contradiction that there does not exist an assignment A that
renders all clauses true: Let us assume that such an assignment A does exist.
We deduce further clauses from the existing ones which are also satisfied by
that same assignment: If the assignment A renders all clauses true, it must
hold that A(A) = 1. Thus ¬A is false, and the second clause can be true only
if A(B) = 1. This argument is repeated, all together, and they are represented
in the tree of Figure 2.6. In the last step, we obtain that the assignment must
make both E and ¬E true — a contradiction: Our initial assumption was
wrong, and the assignment in question cannot exist in the first place. We have
shown the formula to be unsatisfiable.
Example 2.18. Prove the semantic conclusion

{A ∨ B, A → C, A → C, B → C} � C .

This means showing that the formula

(A ∨ B) ∧ (¬A ∨ C) ∧ (¬B ∨ C) ∧ ¬C
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is unsatisfiable. Figure 2.7 shows the clauses and their resolution.
We explain the rationale of a resolution step by the following example:

Example 2.19. Every assignment that renders both {A, B, ¬C} and {¬A, ¬E}
true must also render {B, ¬C, ¬E} true. To prove this we have to distinguish
the cases

1. A(A) = 0: Then {B, ¬C} must be true and, therefore, also {B, ¬C, ¬E}.

2. A(A) = 1: Then {¬E} must be true and, therefore, also {B, ¬C, ¬E}.

Whatever truth value A is assigned, the clause {B, ¬C, ¬E} is always true.

Definition 2.13 (Resolution Step). Let C1, C2, and R be clauses. R is the
resolvent of C1 and C2 if there exists a literal L such that L is in C1 and ¬L
is in C2 and R contains all literals in C1 and C2 except of L and ¬L.

In set notation:
F = C1 \ {L} ∪ C2 \ {¬L} .

The rationale is that C1 and C2 semantically imply R

{C1, C2} � R .

The following examples show that resolution does not merely show unsat-
isfiability but also yields an assignment if the formula is satisfiable.
Example 2.20. Is the following formula satisfiable?

F = (A ∨ B ∨ ¬C) ∧ (¬A ∨ ¬E) ∧ (¬C ∨ D ∨ E) ∧ C ∧ (¬D ∨ ¬C) .

From the resolution in Figure 2.8, one obtains a model

A : A �→ 0
B �→ 1
C �→ 1
D �→ 0
E �→ 1

{A, B} {¬A, C} {¬B, C} {¬C}

{¬B}

{¬A}{A}

�

Figure 2.7: Clauses and resolution from Example 2.18.
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{A, B, ¬C} {¬A, ¬E} {¬C, D, E} {C} {¬D, ¬C}

{B, ¬C, ¬E} {D, ¬E} {¬D}

{E}{B, ¬E}

{B} {¬A}

Figure 2.8: Resolution from Example 2.20.

That is, if a formula is not unsatisfiable, then the resolution calculus leads
us to a satisfying assignment.

A functional programming language directly based on resolution calculus
is PROLOG.
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2.8 Exercises
Exercise 2.1 (Pigs). Every old pig eats a lot, and every healthy pig eats a lot.
On a farm, there are pigs that eat a lot and there are pigs that do not. Which
of the following statements follow from these premises?

1. There are both old and young pigs on the farm.

2. There are young pigs on the farm.

3. All pigs that do not eat a lot are young.

4. Some young pigs on the farm are sick.

5. Some old pigs on the farm are sick.

6. All young pigs on the farm are sick.

Exercise 2.2 (Syntax of Propositional Logic). In this exercise, the notion of a
correct formula is to be understood according to the restrictive definition from
class, represented by the syntax diagram: No brackets are to be omitted, and
the only allowed connectives are ∧, ∨, and ¬.

Decide for the following strings whether they are correct formulas. For
those that are, draw the syntax tree and evaluate the formulas for the assign-
ment A(A) = A(B) = A(C) = true.

1. (((A ∧ B) ∨ C) ∧ ((A ∧ B) ∨ (¬C)))

2. ((A ∧ A ∧ B))

3. ((A ∨ (B ∨ C)) ∧ ((A ∨ B) ∨ (¬C)))

4. (¬¬¬A)

5. (¬(¬A)) = A

Exercise 2.3 (Semantics of Propositional Logic). In this exercise, we use the
“liberal” syntax: Parantheses can be omitted, and we allow other connectives
besides ∧, ∨, and ¬, such as: →, ↔, or ⊕ = XOR.

Decide with truth tables which of the following formulas (which are all
syntactically correct) are tautologies, and which are unsatisfiable:

1. A → (B → (A ↔ B))

2. A → (¬B → (A ⊕ B))

3. (A ⊕ B) ↔ (A ↔ B)

4. ((A ⊕ B) ⊕ ¬A) ↔ B

43

© CC BY 4.0, https://vdf.ch/discrete-mathematics-e-book.html



2.8. EXERCISES

5. (A → B) ∧ (C → A) → ¬(B ⊕ C)

Exercise 2.4 (Normal Forms). Find, for each of the formulas below, a seman-
tically equivalent formula in CNF and in DNF:

1. A → A ∨ B

2. (¬A → B ∧ C) ↔ ¬C

3. A ⊕ B ⊕ C

Exercise 2.5 (Conclusions). Show that these are all correct semantic conclu-
sions:

1. ¬(F ⊕ G) , F ∨ G |= F ∧ G

2. F1 → F2 , F2 → F3 , F3 → F1 |= (F1 ↔ F2) ∧ (F2 ↔ F3)

3. (L ∨ F ) ∧ (¬L ∨ G) |= F ∨ G

Exercise 2.6 (The Sheep and the 40 Lions). A sheep is among 40 hungry lions.
In this exercise, we want to answer the question whether it should be worried.
Let the following rules be valid:

• The sheep cannot be subdivided: If it is being eaten, then by exactly
one lion.

• This lion, however, then falls into a deep digestive sleep, and he can be
eaten by one of his colleagues. In other words, a lion becomes a sheep
after having eaten.

• If a lion has to fear being eaten after having eaten, he would not eat. If
he has nothing to fear, he eats.

• The lions are not only hungry, but also intelligent and rational, and they
rely on the others being so, too. (For the poor sheep, this assumption is
of no help.)

1. Let, for n ≥ 0, Bn be the proposition: “If a sheep is among n lions, then
it will be eaten by one of them.”
Determine the truth values of B0, B1, B2, and B3.

2. For n ≥ 1, represent the truth value of Bn recursively as a function of
Bn−1.

3. Using this, determine B40 and, generally, Bn as a function of n.
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Exercise 2.7 (Resolution). Decide for the following formulas in CNF whether
they are tautologies, unsatisfiable, or neither of the two. In the first two cases,
give a proof. In the third, give both an assignment that makes the formula
TRUE and FALSE.

1. (A ∨ B) ∧ (¬B ∨ D ∨ E) ∧ (A ∨ ¬D ∨ E) ∧ ¬A .

2. (A ∨ B) ∧ ¬E ∧ (¬B ∨ D) ∧ (¬D ∨ E) ∧ (¬A ∨ B) .

3. (A ∨ H ∨ H ∨ ¬A) ∧ (D ∨ ¬B ∨ E ∨ B) ∧ (F ∨ C ∨ E ∨ ¬C ∨ G) .

Exercise 2.8 (Consequences). Decide through resolution whether the following
semantic consequences are correct or not:

1. A ∨ B, ¬B ∨ D, ¬D ∨ E, ¬A ∨ B |= E .

2. {A, B, C}, {¬A, ¬B, C} |= {C} .

Exercise 2.9 (Sushi). I have a lot of potatoes, oil, and rice at home, but I
would like to eat sushi. What to do? My Japanese neighbour will surely give
me wasabi if I bring her both beef and fries. With potatoes and oil, I can
make fries as well as potato salad (as much as required, of both). For sushi,
I need fish and rice and wasabi. My other neighbor (who just turned veggie)
will certainly give me fish and beef if I get him some rice and potato salad.

So in the end, will I be able to have my sushi? Please answer this question
using resolution.
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Chapter 3

Set Theory

Let us turn to the second pillar of mathematics, namely, set theory. As men-
tioned in the Introduction, all objects in mathematics are sets. For instance,
the natural numbers can be defined inductively, starting from the empty set,
through never-ending formation of new sets:

0 := ∅
1 := {0} = {∅}
2 := {0, 1} = {∅, {∅}}
...

n := {0, 1, . . . , n − 1} .

3.1 Basic notions
A set is a collection of objects — where all these objects are sets themselves
(remember: all objects are). Thus, set theory is about a relation, called the
element relation, among sets.

Definition 3.1 (Element Relation). The relation “is an element of” relates
an object (set) x 1 with a set A. One says “x is an element of A” or “x is in
A” or “A contains x” and writes

x ∈ A .

On the other hand, if x is not in A, one writes

x /∈ A or ¬(x ∈ A) .
1It is common to label sets with capital letters and their elements with small letters —

although, again, also the lowercase-letter objects are sets.
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3.1.1 “Cantor’s Paradise”
Georg Cantor is the founder or set theory, where his definition of what a set
is, and what objects it can contain, was very liberal in the sense that a set was
a collection of any kind of objects with the only condition that these objects
be distinguishable from each other.

Definition 3.2 (Cantor’s naive approach). Any collection of well-distinguished
objects is a set.

In this “liberal” definition, it is, in particular, not excluded that a set
contains itself as a member. Unfortunately, this possibility leads to a serious
problem: If a set can contain itself (or not, of course), then exactly this prop-
erty can be used to form a new set: The set M of all elements that do not
contain themself as an element :

M := {B|B /∈ B} .2

Then, what about this question: Does M contain itself? If it does, it does not,
according to the definition — a classical antinomy: Näıve set theory crashes.
This antinomy, which is due to the mathematician and philosopher Bertrand
Russell, was, by Russell himself, put as follows: A barber is a man who shaves
every man who does not shave himself. Does the barber shave himself? Again,
he does exactly when he does not.

That was the end of Cantor’s Paradise. The way out is a set of stricter
rules about what can be a set. It will still be the case that sets contain sets
(there is nothing else, after all), but with the new rules, there is no more such
a thing as “the set of all sets.” And in particular, it never occurs that a set
contains itself. The most famous set of such rules goes back to Ernst Zermelo
and Abraham Fränkel (ZF), extended by the somewhat mysterious “axiom of
choice” (ZFC).

3.1.2 Zermelo/Fraenkel/Choice (ZFC) set theory
In a nutshell, ZFC set theory is a set of axioms describing how sets can be
formed from other sets.

We introduce symbols from predicate logic (which we have not studied
here) which we use in the text simply as linguistic abbreviations.

Definition 3.3 (Quantifiers). In order to express that a statement holds for
all cases of a kind, one uses the universal quantifier ∀. If a statement holds
for at least one instance of a kind, the existential quantifier ∃ is used.

2In this context the symbol “|” means “such that” (and not NAND as in Chapter 2).

48

© CC BY 4.0, https://vdf.ch/discrete-mathematics-e-book.html



Discrete Mathematics

Example 3.1. In terms of quantifiers, the statement “all natural numbers are
non-negative” is

∀x ∈ N (x ≥ 0)

(read: “for all x in N, x is greater or equal to zero”). Similarly, the statement
“there exists at least one natural number greater than 100” can be written as

∃x ∈ N (x > 100)

The first axiom of ZFC, called extensionality, states that a set is completely
determined by its elements. It implies, in particular, that the order in which
the elements are listed is irrelevant, and that an object cannot be in a set
multiple times.

Axiom 1 (Extensionality Axiom). Two sets are equal if they contain the same
elements:

∀A ∀B (∀x (x ∈ A ⇔ x ∈ B) ⇒ A = B) .

Note that the axiom implies that the sets are equal if and only if they
contain the same elements. The sufficiency of that condition is stated by the
axiom, whereas its necessity is purely logical : The logic of equality requires
that if two objects are equal, then they have the same properties.
Example 3.2. As the following sets contain the same elements, they are equal:

{a, b, c} = {b, c, a} = {a, a, b, c} .

Neither the order nor multiple occurrences matter. The following sets are not
equal:

{a, b, c} �= {{a} , {b} , {c}}

In particular, a and the set containing a, i.e., {a}, are not equal.
Predicates, i.e., properties, yield subsets of a given set: It is possible to

single out in a set all the elements of the original set having that certain
property.

Definition 3.4 (Predicate). For a given set A, a predicate is a function P :
A → {false, true}. P can also be regarded as a property that all x ∈ A have
for which P (x) = true.

Axiom 2 (Subsets from Predicates). Given a set A and a predicate P on A,
the collection of all elements that have the property P (i.e. for which P is
true)

B := {x ∈ A | P (x) = true} = {x ∈ A | P (x)}

is another set.

49

© CC BY 4.0, https://vdf.ch/discrete-mathematics-e-book.html



3.1. BASIC NOTIONS

Example 3.3. One can define a predicate on the natural numbers to be true if
and only if the argument is less or equal to 10. This yields the set

A := {x ∈ N | x ≤ 10} .

With a second predicate on A returning true if and only if the argument is
prime, we obtain

B := {x ∈ A | IsPrime(x)} = {2, 3, 5, 7} .

Definition 3.5 (Subset). A set A is a subset of another set B if all elements
of A are also elements of B:

A ⊆ B :⇔ ∀x(x ∈ A ⇒ x ∈ B) .

Using the subset relation we can formulate a first theorem.

Theorem 3.1. If a set A is a subset of B and B a subset of A, then the two
sets are equal:

A ⊆ B ∧ B ⊆ A ⇒ A = B .

Proof. The theorem is a direct consequence of the axiom of extensionality. As
A is a subset of B, any element in A is an element of B and vice versa any
element in B is an element of A. Thus, an element x is an element of A if and
only if it is an element of B, i.e., A and B contain the same elements.

Of course, set theory makes sense only if sets exist. Normally, the existence
of the empty set is postulated. It is surprising enough that, from this alone,
the whole rich zoo of mathematical objects blossoms out of this semen. In
fact, it is only necessary to postulate the existence of at least one set A, then
the empty set can be gotten out of it with the predicate rule, and the predicate
of inequality :

∅ := {x ∈ A | x �= x} = {} .

Thus, we obtain the empty set as the subset of A not containing any element
from A. By extensionality, the empty set is unique. Furthermore, it is a subset
of any set.

Let us now consider different ways of forming new sets from given ones.

Definition 3.6 (Intersection). Given two sets A and B, the intersection A∩B
consists of all elements contained in both:

x ∈ A ∩ B :⇔ x ∈ A ∧ x ∈ B .

Note that this is not a new axiom. Any intersection can just be written in
terms of predicates:

A ∩ B = {x ∈ A | x ∈ B} .

The union of two sets cannot be written in terms of predicates. We thus
require another axiom.
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Figure 3.1: Intersection and union of two sets.

Axiom 3 (Union). Given two sets A and B, their union A ∪ B containing all
elements of A as well as all elements of B is a set:

x ∈ A ∪ B :⇔ x ∈ A ∨ x ∈ B .

To compare two sets, we need to define the (asymmetric) difference and
the symmetric difference of two sets.

Definition 3.7 (Difference). The difference of two sets A and B — denoted
by A \ B — is defined as the set of all elements contained in A but not in B,
i.e.,

x ∈ A \ B :⇔ x ∈ A ∧ x /∈ B .

Definition 3.8 (Symmetric Difference). The symmetric difference is defined
using the XOR:

x ∈ A�B :⇔ x ∈ A ⊕ x ∈ B .

The symmetric difference — as the name suggests — is the symmetric
version of the difference. It is equal to the union of A \ B and B \ A as well as
to the union of A and B minus their intersection:

A�B = (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B) .

The definitions above show the close relation between set theory and logic:
Using the logical connectives, we can define corresponding set operations.

The construction of the power set goes beyond that, and it is the most
“powerful” of the ZFC set-forming axioms, allowing for constructing in par-
ticular very large sets from smaller ones. The power set of a set A is the set
of all subsets of A.

Figure 3.2: Difference and symmetric difference of two sets.
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Definition 3.9 (Power Set). The power set of a set A is the set of all subsets
of A, i.e.,

x ∈ P(A) :⇔ x ⊆ A .

In particular, the power set contains the empty set and A itself.
The power set is also denoted 2A as the cardinality, i.e. the number of

elements, of the power set is just

|P(A)| = 2|A|

if A is finite. This is since for each of the |A| elements of A, we can de-
cide whether we choose it or not for the subset: We have |A| binary choices,
multiplying up to 2|A| total choices, i.e., different subsets.
Definition 3.10 (Complement). If a set A is defined as the subset of some
larger set U , usually called the universe, then the complement of A is

Ā := U \ A .

Families. Any union or intersection of sets, indexed by a set, yields another
set. For a family of sets Ai with an index i ∈ I, we define

x ∈
⋃
i∈I

Ai :⇔ ∃i ∈ I(x ∈ Ai)

x ∈
⋂
i∈I

Ai :⇔ ∀i ∈ I(x ∈ Ai) .

(These are well-defined due to associativity.)
Let us finally look at this mysterious “axiom of choice.” Intuitively, it asks

for a quite unsurprising fact: If you have a family of all non-empty sets, then it
is possible to choose exactly one element out of each of the (non-empty) sets in
the family. (Another way of putting it is: The Cartesian product of a family of
non-empty sets is non-empty.) What is so mysterious about that? Although
it is intuitive — why would the claimed not be possible? — it has counter-
intuitive consequences, such as the Banach/Tarski paradox : A unit ball can
be cut into five peaces (subsets) that can be rearranged using only rotations
and translations, for obtaining two unit balls of the same size. This suggests
that our intuition is somehow inconsistent. In this sense, Banach/Tarski is
“only” a paradox, and not an antinomy: It appears weird to us, but it is not
an intrinsic logical problem of the theory. Which does not mean that it does
not have consequences: For instance, it is not possible to define a universal
volume function. The reason why the axiom of choice appears so innocent to
us is that we apply it to finite families, whereas the strange consequences come
when you apply it beyond this, to infinite families. Major parts of mathematics
depend on that axiom, such as most of functional analysis, which is the basis
for quantum mechanics.

52

© CC BY 4.0, https://vdf.ch/discrete-mathematics-e-book.html



Discrete Mathematics

The axiom of choice. Given a family of sets, each containing at least one
element, it is possible to make a selection of exactly one object from each set.

3.1.3 Laws derived from logic
The close relation between logic and set theory mentioned above allows us to
infer set-theoretic laws from logical laws. One obtains the correspondent of a
logical law in set theory by replacing ∧ by ∩, ∨ by ∪, ¬ by the complement
and the semantic equivalence by equality of sets.

Idempotence in logic states that the formula A ∧ A is semantically equiv-
alent to A, i.e., A ∧ A ≡ A. In terms of sets, this becomes

A ∩ A = A .

Similarly we obtain from A ∨ A = A,

A ∪ A = A .

Absorption states that a formula A ∧ (A ∨ B) is semantically equivalent
to A. For sets, this turns into

A ∩ (A ∪ B) = A .

Distributivity for logical conjunction is (A ∧ B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C)
and turns into

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C) .

Finally also de Morgan’s laws have set-theoretic correspondents. If we have
a reference set U , and can thus apply the complement operation, we obtain

(A ∪ B) = A ∩ B

as the set analogue of ¬(A ∨ B) = ¬A ∧ ¬B.
We prove one of the identities as an example. Note that one way to show

that two sets are equal is to show that each is a subset of the other. For
showing that a set A is a subset of B, we show that any element x ∈ A also
belongs to B.
Example 3.4. For any two sets A, B, prove that:

1. A ∩ (A ∪ B) = A (Absorption Law).

2. (A ∩ B) ∪ (A ∩ B) = A.

Proof. We assume that U is the universe set for part 2 and hence A, B ⊆ U .
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1. We show that these two sets are equal by showing that each is a subset of
the other. First we show that A∩ (A∪B) ⊆ A. Suppose x ∈ A∩ (A∪B)
be any element of this set. Then, x ∈ A and x ∈ A ∪ B by the definition
of intersection. Since x ∈ A, we have proved that the left-hand side is a
subset of the right-hand side.
Conversely, let x ∈ A be an arbitrary element of A. Then by the
definition of union, x ∈ A ∪ B as well. Since both of these are true,
x ∈ A ∩ (A ∪ B) by the definition of intersection, and we have shown
that the right-hand side is a subset of the left-hand side.
The two directions together imply the equality.

2. Again, we show that these two sets are equal by showing that each is
a subset of the other. Suppose x ∈ (A ∩ B) ∪ (A ∩ B). Then we know
that either x ∈ (A ∩ B) or x ∈ (A ∩ B) (or both). In either case, by the
definition of intersection, this forces x ∈ A. Thus, we have shown that
the left-hand side is a subset of the right-hand side.
For the opposite direction, suppose x ∈ A. Then x ∈ U = B ∪ B.
By definition of union, there are two cases: x ∈ B or x ∈ B. In the
former case, x is an element of (A ∩ B) and therefore also an element
of (A ∩ B) ∪ (A ∩ B). In the latter cases, x ∈ B and therefore x is an
element of (A ∩ B) and therefore also an element of (A ∩ B) ∪ (A ∩ B).
Hence the equality follows.

3.1.4 The Cartesian product
In the 17th century, the early modern philosopher René Descartes introduced
the Cartesian product to describe the location of points by their coordinates.
Only later Cartesian products were formalized in set theory employing ordered
pairs. Consider, for example, points in the two-dimensional plane, as shown in
Figure 3.3. The points (x, y) and (y, x) are generally not the same. The order
of the coordinates does matter: Differently from unordered pairs, two ordered
pairs (a, b) and (c, d) are equal if and only if a = c and b = d. How can we
define such an ordered pair in set theory?

(x, y)

(y, x)

R

R

Figure 3.3: The order of the coordinates matters.

54

© CC BY 4.0, https://vdf.ch/discrete-mathematics-e-book.html



Discrete Mathematics

Definition 3.11 (Ordered Pair). The ordered pair (x, y) is defined as

(x, y) := {{x} , {x, y}} .

Let us verify whether this definition leads to the equality property for two
points (a, b) and (c, d), mentioned above. The ordered pairs correspond by
definition to the sets {{

a
}

,
{

a, b
}} {{

c
}

,
{

c, d
}}

.

If the two sets are equal, then a and c necessarily have to be equal. There-
fore, as also the elements {a, b} and {c, d} have to be equal, b and d have to
be equal.

A special case of an ordered pair is the one containing the same element
twice. Then the set is equal to the set containing the set containing the
element:

(x, x) = {{x} , {x, x}} = {{x} , {x}} = {{x}} .

Having established the notion of an ordered pair, we can now define the
Cartesian product of two sets.

Definition 3.12 (Cartesian Product). Given two sets A and B, their Carte-
sian product is defined as the set containing all ordered pairs:

A × B := {(a, b) | a ∈ A ∧ b ∈ B} .

If one of the two is the empty set, the Cartesian product is empty:

A × ∅ = B × ∅ = ∅ .

Generally, if neither A nor B are empty, and they are not equal, A �= B, then
the Cartesian product is not symmetric, i.e.,

A × B �= B × A .

Example 3.5. Considering the sets A = {1} and B = {2, 3} we obtain the
Cartesian products:

A × B = {(1, 2), (1, 3)}
B × A = {(2, 1), (3, 1)}

The definitions of ordered pairs extends naturally to ordered lists of more
than two numbers, so called tuples. Given a finite index set, I = {1, . . . , k} we
define the Cartesian product of k sets as

×
i∈I

Ai := {(a1, . . . , ak) | ∀i ∈ I(ai ∈ Ai)} .
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R

R1 2

1

2

R

R1 2

1

2

Figure 3.4: The shaded area to the left is the Cartesian product
[0, 2]2, the one to the right the difference [0, 2]2 \ [0, 1]2.

Example 3.6. Given an interval

[0, 2] := {x ∈ R | x ≥ 0 ∧ x ≤ 2} ,

the Cartesian product [0, 2]2 = [0, 2] × [0, 2] is a square with length 2 as shown
in Figure 3.4. Another subset of R2 = R × R, [0, 2]2 \ [0, 1]2, is shown in the
figure as well.

Example 3.7 (Order Relation). Using the order relation ≤ we can define the
following subset

R :=
{

(x, y) ∈ R2 | x ≤ y
}

pictured in Figure 3.5. So far, order relations were not formally defined. We
make up for that in the next section, turning things around: We define the
relation ≤ to be the equal to the set R.

R

R

Figure 3.5: The area above the diagonal corresponds to the order
relation ≥.
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3.2 Relations
Definition 3.13 (Binary relation). A (binary) relation R from A to B is a
subset of the Cartesian product of A and B:

R ⊆ A × B .

We speak of a relation from A to B (we have in mind here functions from
A to B). In the special case where A = B, a relation R from A to A is usually
called relation on A (except, again, in the case of a function from A to A).
For a pair (a, b) ∈ R, we write aRb.

We apply the set calculus from above on relations since they are simply
sets.
Example 3.8. The intersection of the relations ≤ and ≥ is equal to the equality
relation. Set operations are indicated by blue, relations by red:

≤ ∩ ≥ = =

Similarly, the symmetric difference of the two yields the inequality relation:

≤ � ≥ = �=

The relation < is contained in ≤, and > in ≥:

< ⊆ ≤ > ⊆ ≥

The complement of ≤ is >.
Example 3.9. We introduce relations on the integers that are of particular
interest in number theory and cryptography:

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .} .

R

R

R

R

Figure 3.6: Merely the diagonal line with x = y is contained in
both relations.
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An integer b is said to be divisible by another integer a (or a is a divisor of b)
if there exists c ∈ Z such that a · c = b. Divisibility is usually denoted by “|,”
a symbol we have already seen used to mean “such that.” This is one of the
many cases in which using mathematical notation creates confusion instead of
clarity. To avoid misunderstandings, the convention is to use either “ |” or
“:” to mean “such that,” depending on the context. Accordingly, the formal
definition of divisibility is

a | b :⇔ ∃c ∈ Z : a · c = b .

For instance, 4 is divisible by 2, and 9 by -3, but 5 not by 2:

2 | 4 − 3 | 9 2 � 5 .

Divisibility is a binary relation on Z:

| ⊆ Z × Z = Z2 .

All relations we have seen before on R can be reduced to relations on Z by
intersection:

≤Z = ≤R ∩ Z2

Finally, congruence modulo m is defined as

a ≡ b (mod m) :⇔ m | (a − b) ,

i.e., two integer numbers a and b are congruent modulo m if the difference of
the two is divisible by m. This is the same as saying that the integer division
of each a and b by m yields the same remainder. For instance, 3 and 5 are
congruent modulo 2, while 3 and 4 are not:

3 ≡ 5 (mod 2) 3 �≡ 4 (mod 2) .

Each natural number m defines such a congruence relation ≡m with the modulo
m. The intersection of two such congruence relations yields another one with
the least common multiple3 (lcm) being the modulus:

≡m ∩ ≡n = ≡lcm(m.n)

3The least common multiple of two integers a and b is the smallest number c ∈ Z such
that there exist integers m, n ∈ Z with a · m = c = b · n. For relatively prime numbers a and
b, the least common multiple is simply their product, c = a · b.
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So one obtains, for example,

≡2 ∩ ≡2 = ≡2 ≡2 ∩ ≡3 = ≡6

Symmetry of relations. Two important types of relations are order rela-
tions and equivalence relations. Whereas they overlap in certain properties,
mainly transitivity, they essentially differ in one: Orders are anti -symmetric,
whereas equivalences are symmetric. Symmetry hereby means that an ordered
pair (a, b) is in R if and only if the swapped pair (b, a) is also in R. Anti-
symmetry, on the other hand, means that at most one of the two can hold for
any two a �= b.

Inequality relations such as ≤, ≥, > and < are anti-symmetric relations.
They impose on the set, on which they are defined, a hierarchy.

Equality, congruence, and semantic equivalence are equivalence relations.
These relations yield a partition of the set they are defined on. That means
they divide the set into subsets, each containing all elements equivalent to one
another. Equivalence relations are often denoted by ∼.
Example 3.10 (Order Relations). Let us return to the example of divisibility
on Z. It is an order relation. For now we restrict the relation (by intersection)
to the subset A := {1, 2, 3, 4, 5, 6} ⊆ Z. The order relation on this finite set
can be visualized in a graph, as in Figure 3.7. Following the arrows, also for
multiple steps, yields the ordered pairs in |. Similarly, we obtain the graph
3.8 for divisibility on B = {1, 2, 3, 5, 6, 10, 15, 30}. The corresponding Hasse
diagram is the two-dimensional projection of a cube. The order relation ⊆ on
the power set

P({1, 2, 3}) = {∅, {1} , {2} , . . . , {1, 2, 3}}
represents the same cube. One can now extend the graph to a projection of
a 4-dimensional hypercube. This corresponds either to the divisibility rela-
tion on the set {1, 2, 3, 4, 5, 7, . . . , 210} or the subset relation on the power set
P({1, 2, 3, 4}). Considering the latter, we extend the cube by another linked
cube containing the set with 4 as Figure 3.9.
Example 3.11 (Equivalence relation). Let us consider an equivalence relation
on {1, 2, 3, 4, 5, 6}2 = {(i, j) | 1 ≤ i, j ≤ 6} defined as

(a, b) ∼ (c, d) :⇔ a · d = b · c .

Intuitively, the ratio of the two numbers in two equivalent pairs is equal. The
relation yields the following equivalence classes:

{1/1, 2/2, 3/3, 4/4, 5/5, 6/6} ,

{1/2, 2/4, 3/6} , {2/1, 4/2, 6/3} ,

{1/3, 3/6} , . . .

{1/4} , . . .
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This is how the rational numbers are defined in terms of the integers: as the
set of such equivalence classes: We write

Q := Z × (Z \ {0})/∼ .

3.2.1 Representation of relations
Relations on finite sets A and B can be represented by either binary matrices
or bipartite graphs.

In matrix representation, each row corresponds to an element in A and each
column to an element in B. The entry is then 1 if and only if the corresponding
pair (a, b) is in R:




b1 b2 · · · bn

a1 1 0 · · · 1
a2 0 1 · · · 0
...
am 0 0 · · · 1




In the bipartite graph, the nodes on the left correspond to elements in A,
the ones on the right to elements in B. The nodes are linked if and only if
(a, b) ∈ R.

a1

a2

a3

b1

b2

b3

1

2 3 5

64

Figure 3.7: The graph shows divisibility on the set A. The num-
ber 1 divides all other numbers and is thus the root of the directed
path. Its direct neighbours are the prime numbers. Finally, the
integers 4 and 6 are connected to their prime factors.
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1

2 3 5

30

6
10 15

∅

{1} {2} {3}

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

Figure 3.8: The graph on the left shows the divisibility of the
set B. 1 divides all other numbers and is thus the root of the
directed path. The direct neighbors are prime numbers.

∅

{1} {2} {3}

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{4}

{1, 4} {2, 4} {3, 4}

{1, 2, 3, 4}

{1, 2, 4} {1, 3, 4} {2, 3, 4}

Figure 3.9: The graph of the subset relation on the power set
P({1, 2, 3, 4}) corresponds to the 4-dimensional hypercube.

In the special case of relations on a set A, i.e., where A = B holds, repre-
sentations can be made so that every element a of A is drawn only once, and
an arrow connects a1 and a2 if and only if the pair (a1, a2) is in the relation.
What results is a graph. (It is, however, not a simple graph since it can have
loops, i.e., a node connected by itself via an arrow.) In some way, a graph is
in fact nothing but (the representation of) a relation on its vertex set.

3.2.2 Properties of relations

We consider different properties of relations. We restrict ourselves to relations
and a set A, i.e., the special case where A = B.
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Reflexivity. A relation R on A is reflexive if for any element a ∈ A the pair
(a, a) is in R:

∀a ∈ R : (a, a) ∈ R .

In matrix representation, the corresponding matrix has only ones on the diag-
onal. The representing graph has a loop for each of its nodes.

a

Example (Reflexive relations).

≡m = ≤ ≥

Anti-reflexivity. A relation R on A is anti-reflexive if

∀a ∈ A : (a, a) /∈ R .

The diagonal of the corresponding matrix is 0, and there are no loops in the
associated graph.
Example (Anti-reflexive relations).

> < �=

Symmetry. A relation R on A is symmetric if

∀a, b ∈ A : (a, b) ∈ R ↔ (b, a) ∈ R .

For finite sets A the corresponding binary matrix is symmetric: That is
MT

R = MR. In the graph representation, symmetry means that whenever
there is an arrow in one direction, there is also one in the inverse direction.
Thus, symmetric relations are often represented as undirected graphs, with
undirected edges instead of arrows.
Example (Symmetric relations).

≡m =

Anti-symmetry. A relation R on A is anti-symmetric if

∀a, b ∈ A : (a, b) ∈ R ∧ (b, a) ∈ R ⇒ a = b

Example (Anti-symmetric relations).

≤ < ≥ >
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In the matrix representation: Whenever a non-diagonal position (i.j) holds
a 1, then the mirrored position (j, i) must hold a 0. (A 0 is both positions is
possible.)

Note that also the strict inequalities such as < are anti-symmetric as the
condition is merely a conclusion in the definition, not an equivalence: The
relation to hold in both directions can only happen for equal entries, but it
does not have to. For <, the condition ((a, b) ∈ R ∧ (b, a) ∈ R) is simply never
met — which makes the conclusion always true.

Transitivity. A relation R on A is transitive if

∀a, b, c ∈ A : (a, b) ∈ R ∧ (b, c) ∈ R ⇒ (a, c) ∈ R .

Example. This is the central property shared by both equivalence and order
relations. Transitive are

= ≡m ≤ < ⊆ .

The negations of some of the above are not transitive:

�= .

The only “positive” one that comes to mind which is intransitive is the element
relation

∈ .

We look at three types or relations: Equivalences, orders, and functions.

3.2.3 Equivalence relations
Definition 3.14 (Equivalence relation). A relation R on a set A is called an
equivalence relation if it is reflexive, symmetric, transitive.

Example 3.12 (Age group). Let us consider the set of all humans, A :=
{humans}. Their age group is an equivalence relation4 formally defined as

a ∼ b :⇔ a and b are born in the same year .

This equivalence relation introduces a partition on the set of all humans. They
are being grouped by their year of birth.

Equivalence relations are dividing the ground set A into “classes,” they
partition the set. We formally define what a partition of a set is, and then we
prove the claimed equality of equivalence relations and partitions.

4To show that the relation “the same age group” is an equivalence relation, one needs to
show that it satisfies the properties in the definition. Rather obviously, it does so since it is
based on an equality.
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1979

1980
1981

Figure 3.10

Definition 3.15 (Partition). Let A be a set. A partition of A is a family of
sets (Ai)i∈I with the following two properties:

• Their union yields A:
⋃

i∈I Ai = A ,

• they are pairwisely disjoint: Ai ∩ Aj = ∅ ∀i, j ∈ I, i �= j .

Theorem 3.2. Any equivalence relation yields a partition, and vice versa.
More precisely, if ∼ is an equivalence relation on A, then the equivalence
classes

[a] := {x ∈ A | x ∼ a} ⊆ A

are a partition of A.
Conversely, if (Ai)i∈I is a partition of A, then the relation

x ∼ y :⇔ ∃i ∈ I : x ∈ Ai ∧ y ∈ Ai

is an equivalence relation.

Proof. We show that, for a given equivalence relation ∼, the equivalence classes
yield a partition. As any equivalence class [a] contains at least a by reflexivity,
it follows

A ⊇
⋃

a∈A

[a] ⊇
⋃

a∈A

{a} = A ⇒
⋃

a∈A

[a] = A .

It remains to show that the equivalence classes are disjoint. In fact, if two
equivalence classes are not disjoint, then they are equal. This follows from
transitivity, as follows: Consider two equivalence classes, [x] and [y], with a
non-empty intersection: That implies there exists an element z ∈ A, such that
z ∈ [x] ∩ [y]. Therefore, z ∼ x and z ∼ y, and thus by transitivity x ∼ y.
Employing again transitivity, we obtain that any other element x′ ∈ [x] is
equivalent to y and thus in [y], we obtain [x] ⊆ [y]. The same argument can
be made to obtain [y] ⊆ [x], and thus [x] = [y].

The second part of the theorem is trivial.
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Example 3.13 (Semantic Equivalence). Semantic equivalence is an equivalence
relation on the set of all syntactically correct formulas. It gives rise to a
partition with 2(2n) classes if there are n atoms.

Example 3.14 (Congruence Modulo n). The relation “congruence modulo m,”
≡m, is an equivalence relation on Z any m ∈ Z. It yields m equivalence classes:

[0] = {. . . , (−2) · m, (−1) · m, 0, m, 2 · m, 3 · m, . . .}
[1] = {. . . , (−2) · m + 1, (−1) · m + 1, 1, m + 1, 2 · m + 1, 3 · m + 1, . . .}
[2] = {. . . , (−2) · m + 2, (−1) · m + 2, 2, m + 2, 2 · m + 2, 3 · m + 2, . . .}
[3] = {. . . , (−2) · m + 3, (−1) · m + 3, 3, m + 3, 2 · m + 3, 3 · m + 3, . . .}
...

[m − 1] = {. . . , (−2) · m − 1, (−1) · m − 1, −1, m − 1, 2 · m − 1, 3 · m − 1, . . .}

We can now transfer the algebraic structure of Z to the set of equivalence
classes: Based on the arithmetic operations on integers, we define operations
on the set of equivalence classes as

Zm := Z/ ≡m = {[0] , [1] , [2] , . . . , [m − 1]} .

Addition is defined as

[a] + [b] := [a + b] .

We have chosen two particular representatives of the equivalence classes, namely,
a ∈ [a] and b ∈ [b], and used these to define a new equivalence class, [a + b], as
the result of the addition. This operation must be independent of the choice
of the representative for the definition to be meaningful — this fact is called
well-definedness. That is, for any pair of representatives, a′ ∈ [a] and b′ ∈ [b],
the sum should be in the corresponding equivalence class, a′ + b′ ∈ [a + b]. To
show that this is actually the case, we note that any a′ ∈ [a] differs from a
only by an integer multiple of m. The same holds for b′ ∈ [b]:

a′ = a + k · m b′ = b + l · m k, l ∈ Z .

Therefore, the sum of a′ and b′ turns out to be

a′ + b′ = a + b + (k + l) · m ,

and it differs by integer multiple of m from a + b. Thus, it is in the same
equivalence class.
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Multiplication. Similar to addition, we define multiplication in Zm as

[a] · [b] = [a · b] .

Again, we must verify that the addition is well-defined, i.e., independent of
the choice of the representatives. In the same manner as above, one multiplies
a′ = a + k · m and b′ = b + l · m to obtain

a′ · b′ = a · b + m · (a · l + b · k + k · l · m)︸ ︷︷ ︸
∈Z

.

Thus, a · b and a′ · b′ differ by an integer multiple of m and are thus congruent
modulo m. With the two operations · and + on Zm we obtain an algebraic
structure, called a ring.

3.2.4 Order relations
Definition 3.16 (Partial Order). A relation ≤ on a set A is a partial order if
it satisfies the following properties:

• reflexive,

• anti-symmetric: x ≤ y ∧ y ≤ x ⇒ x = y,

• transitive.

Example 3.15 (Partial orders). The following are partial orders:

• For the sets N, Z, and R, the relations ≤ and ≥ are partial orders. The
relations < and > are anti-symmetric but not reflexive and, hence, not
partial orders according to our definition.

• The divisibility relation | on N is a partial order. This is not true for Z,
as a �= −a; divisibility here is not anti-symmetric. a is a divisor of −a
and vice versa, but they are not equal (for all a �= 0).

• The subset relation ⊆ on a powerset P(B) is a partial order.

Remark 2. Note that we do not ask for every pair to be comparable. This
condition reads

∀x, y ∈ A : x ≤ y ∨ y ≤ x

and defines total order, also called linear order or chain.
Whether an order is partial or total can easily be seen from the directed

graph associated with the order. In Figure 3.7, corresponding to the subset
order, not all nodes are connected, and thus the order is not total. The order
≤ on R has a linear graph (or a chain) and is a total order.
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greatest element

maxima

Figure 3.11: The left shows an order with just one maximum, the
greatest element. The right shows an order with two maxima, and
no unique greatest element.

Notions.

• The maximal elements in a set A with partial order ≤ satisfy

�y ∈ A : y �= x ∧ y ≥ x .

• An element x ∈ A is the greatest element if

∀y ∈ A : x ≥ y .

Note that there are possibly multiple maxima, whereas the greatest element
is unique, see Figure 3.11. If there is a greatest element, it is also maximal,
and there are no other maxima besides it.
Example 3.16. Let us consider the set A = {1, 2, 3}2 first with the order

a = (a1, a2) ≤ a′ = (a′
1, a′

2) :⇔ a1 ≤ a′
1 ∧ a2 ≤ a′

2 .

This order is not total, as the pairs (1, 2) and (2, 1) are not comparable. This
can be easily seen by looking at its Hasse diagram (cf. Figure 3.12). Another
order on the same set is

a = (a1, a2) ≤ a′ = (a′
1, a′

2) :⇔ a1 < a′
1 ∨ (a1 = a′

1 ∧ a2 ≤ a′
2) .

This second order corresponds to an alphabetical order. The first component
where the two elements differ decides about the order: It is the lexicographic
order, and it is total (see its Hasse diagram in Figure 3.13).
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(3, 3)

(2, 3) (3, 2)

(1, 3) (2, 2) (3, 1)

(1, 2) (2, 1)

(1, 1)

greatest element

smallest element

Figure 3.12: Hasse diagram for the first order relation.

(3, 3)

(3, 2)

(3, 1)

(2, 3)

Figure 3.13: The lexicographic order has a linear Hasse diagram
as it is a total order.
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3.3 Functions
For two sets A and B, a function from A to B is a relation that “assigns” to
every element a ∈ A exactly one element b ∈ B.

R

R

Ceci est une fonction.

R

R

Ceci n’est pas une fonction.

Figure 3.14: Example for a function and a relation that is not a
function.

Definition 3.17 (Function). A relation f ⊆ A × B is a functional relation
from A to B or, usually, just a function from A to B, written f : A → B, if it
satisfies the following properties:

• ∀a ∈ A ∃b ∈ B : (a, b) ∈ f (Existence of functional value);

• (a, b) ∈ f ∧ (a, b′) ∈ f ⇒ b = b′ (Uniqueness).

Sometimes existence and uniqueness are written expressed together as

∀a ∈ A ∃!b : (a, b) ∈ f ,

where the exclamation mark stands for “only one.”

The definition identifies a function with the corresponding set of pairs (a, b),
i.e., the graph of the function. The following notations are commonly used for
(a, b) ∈ f :

f(a) = b f : a �→ b .

Definition 3.18.

• A function f : A → B is called injective or one-to-one if

∀a, a′ ∈ A : a �= a′ ⇒ f(a) �= f(a′) .

• A function f : A → B is called surjective or onto if

∀b ∈ B ∃a ∈ A : f(a) = b .
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Figure 3.15: The first function has a collision and is thus not
injective. The second has an image that is not equal to B and
thus not surjective. The third shows a bijective function.

• A function f : A → B is called bijective if it is both, injective and
surjective.

A function is injective if each image corresponds to a unique pre-image.
There are no collisions as shown in Figure 3.15. An injective function has an
inverse, which is defined on its image, i.e., from the set f(A) to A.

Surjectivity, on the other hand, means that all points in the set B are
reached, i.e., the image f(A) of f equals B. Finally, bijectivity means both
properties together and yields a one-to-one correspondence between the two
sets. Also, there is an inverse function f−1 : B → A.

R

R

R

R

R

R

Figure 3.16: These three functions f1, f2, f3 : R → R illustrate
the properties of functions. The function on the left is bijective,
the one in the middle is surjective but not injective, and the one
on the right is injective but not surjective.
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The existence of functions with the above properties can be used to intro-
duce relation of sets with respect to their size (cardinality), the hope being
that this is an order relation. (Is it? If yes, is it total?)

Definition 3.19 (Cardinality). We say that a set A is at most as big as
another B, or that the cardinality of a set A is less or equal than the cardinality
of another set B, written A � B, if there exists an injective function from A
to B:

A � B :⇔ ∃f : A → B injective .

The sets are equal in size (they have the same cardinality) if there exists a
bijective function between them:

A ≈ B :⇔ ∃f : A → B bijective .

The relation � is an order relation as shown below, and yields a hierarchy
of sets with respect to size: The relation � is reflexive, as the identity function

id : A → A f(a) = a

is injective (actually bijective). Therefore, A � A.
In order to prove the transitivity of the relation, we introduce the compo-

sition of functions: Given a function f : A → B and a function g : B → C, we
define a function h := g ◦ f : A → C by h(a) = g(f(a)). If both f and g are
injective, then g ◦ f is also injective.

A proof of this statement can be given by contradiction: If g ◦ f was
not injective, there existed elements a and a′ such that g(f(a)) = g(f(a′)).
Employing the injectivity of f , we know that f(a) =: b �= f(a′) =: b′. Thus,
there exist two arguments b and b′, b �= b′, such that g(b) = g(b′), yielding a
contradiction with g being injective: If A � B and B � C, then there exist
injective functions f : A → B and g : B → C. The existence of the injective
function g ◦ f proves A � C, and transitivity.

To complete the proof for � being a partial order, it remains to show
(a statement resembling) anti-symmetry:

A � B ∧ B � A ⇒ A ≈ B . (3.1)

It is not intuitively clear why this should hold, and it is the statement of a
fine, subtle theorem by Cantor, Schröder, and Bernstein.

Theorem 3.3 (Cantor/Schröder/Bernstein). For any two sets A and B, we
have

A � B ∧ B � A ⇒ A ≈ B .

Proof. Imagine a park (associated with a set A) with a house (associated with
a set B) as shown in Figure 3.18. In the house, there is a map of the park.
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Figure 3.17: Injective maps map the first set into the second and
vice versa.

If we look closely enough, we see the house on the map again. This house on
the map in turn contains a map of the park containing a house containing the
park, and so on, and so on, ad infinituum.

As the house is inside the park, i.e. B ⊆ A, there exists an injective
function f : A → B. On the other hand, the map of the park (so the park
itself) is inside the house, and there is an injective map g : B → A.

Bijection. We define a bijection from the park (circle) to the house (square):
Points in sets of the green type “park\house” (i.e., A \ g(B) or “circle\square”
in Figure 3.19) are mapped to their correspondent “an iteration level be-
low.” On the other hand, red points in sets “house\park” (i.e., B \ f(A)
or “square\circle”) are mapped to themselves (on the same level). The mech-
anism is depicted in Figure 3.19.

A

B

Figure 3.18: The park, represented by the green circle, with the
house depicted by the red square. The smaller green circle in the
house corresponds to the map of the park.

We conclude that � satisfies all requirements of a partial order. Indeed it
is even a total order (we do not prove this here). Thus, it is natural to ask
whether there is a greatest element (or maximal element, which is the same in
a total order). Clearly, there is a unique minimum, a smallest element: The
empty set — from which everything starts. In contrast to that, there are no
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Figure 3.19: The bijective map from A to B.

greatest elements: To any set, as large it may be, there is always a strictly
larger one: its power set: A � P(A). Thus, there is no greatest set. The proof
of this fact goes back to Cantor, and it is a generalization of the argument give
right at the beginning of the text that the real numbers and strictly greater
than the natural numbers. (In fact, the real numbers are exactly as large as
the power set of the natural numbers.)

Theorem 3.4 (Cantor). The cardinality of any set A strictly smaller than the
cardinality of its power set:

A �≈ P(A) ,

thus, A ≺ P(A).

Proof. We show that no function

f : A → P(A)

is surjective. We note that any element a ∈ A is either an element of its image
f(a) or not:

a ∈ f(a) ∨ a /∈ f(a) .
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Define the set
B := {a ∈ A | a /∈ f(a)} ⊆ A .

We now show by contradiction that there does not exist an element b ∈ A such
that f(b) = B. Assume such a b did exist: If b ∈ f(b), then b /∈ B = f(b).
This is a contradiction. So there is no surjective function from A to its power
set and no bijection.

(There is a simple injective map from A to its power set P(A), mapping
all elements in A to the corresponding one-element sets:

f : A → P(A) f : a �→ {a} .

Thus, A � P(A) and therefore A ≺ P(A).)

This statement opens the door for larger and larger sets, larger and larger
types of infinities: The real numbers are not the largest set there is; take their
power set, and then the power set of that power set, and so on, to infinity.
Then, go on and take the union of all the sets you have — and the power set
again, etc., this transfinite induction never ends, not even at infinity. There
are infinitely many different infinities. And so on.

As a side remark, it is quite ironic that this famous “diagonal argument” by
Cantor is very similar in its underlying idea to Russell’s “barber” argument
that made Cantor’s paradise, his “näıve” set theory, collapse. How could
Cantor not see it? (Perhaps one is sometimes blind for arguments endanger-
ing one’s own ideas and thoughts, even when the former resemble the latter,
i.e., even if one’s thinking style questions questions and limits itself. One of
G.W.F. Hegel ’s thoughts is that this is always the case: Everything is born
with its own crack, its own end.)

Let us now return to the ground, to the topic of this course: Finite sets,
and to counting their size: Combinatorics, yeah!
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3.4 Exercises
Exercise 3.1 (Set Calculus). Prove the following rules for sets A, B and C.

1. Absorption:
A ∩ (A ∪ B) = A A ∪ (A ∩ B) = A (3.2)

2. Distributivity:

A∩(B∪C) = (A∩B)∪(A∩C) A∪(B∩C) = (A∪B)∩(A∪C) (3.3)

3. De Morgan:
A ∪ B = A ∩ B A ∩ B = A ∪ B (3.4)

4. Discuss the obvious duality, i.e., the possibility to swap ∩ and ∪ in a
particular rule and to obtain another valid rule this way.

Exercise 3.2 (Hasse Diagrams). 1. Draw the Hasse diagram for the inclu-
sion relation on the set P({1, 2, 3, 4, 5}).

2. Draw the Hasse diagram for the divisibility relation on the set of divisors
of the number 2310.

3. Compare the diagrams. What do they represent? Explain your observa-
tions.

Exercise 3.3. Family lunch. Consider the sets

A = {10; 20; 30; 40; 60; 400}, A′ = {10; 20; 30; 40; 60}

B = {1; 2; 3; 4; 6} C = {1; 2; 3; 5; 6}

and the relation R:= “x and y start with the same number.” Which of the
following options yield a function?

1. x ∈ A and y ∈ B

2. x ∈ A and y ∈ C

3. x ∈ A′ and y ∈ B
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Chapter 4

Combinatorics

Combinatorics is a collection of methods, principles, tools, techniques, and
facts to count the size of finite sets with some structure. We start by intro-
ducing some basic notions by means of an example.

4.1 Basic notions
Example 4.1 (Manhattan). Imagine walking from a point A to another point
B on a rectangular grid such as the streets of Manhattan, as shown in Figure
4.1. The question is: How many shortest paths are there from A to B? We
will see two different ways to answer the question yielding the same answer
(hopefully!): The first approach is recursive (in algorithms, this is called divide
et impera; the second one is “one-shot” (not recursive) and based on counting
permutations of the steps in a path from A to B.

Divide and conquer. The key observation for the recursive argument is
this: The number of shortest paths from A to B equals the sum of the numbers

A

B

d

r

Figure 4.1: Some of the shortest paths are highlighted in colors.
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xa

bd

c

e

1

1

1

1

1 1 1

2

3

3

4

4

6 10

10 20

Figure 4.2: In the figure to the left the variables a, b, c, d, e, and x
refer to the number of paths from A to the corresponding points.
Note that they do not refer to the coordinates. The figure on the
right shows the number of shortest paths from A to its neighbor-
ing points.

of shortest paths from A to the two neighbors of B pointing towards A (i.e.,
the one above B and the one to the left of B). Why? Well, every shortest
paths from A to B must pass through exactly one of these two points — all
others unavoidably make some detour. Let x be the number of shortest paths
from A to B, then x = a + b if a and b are the corresponding numbers for the
described points (see Figure 4.2).

The nature of such a recursive approach — reducing the problem in ques-
tion to the same problem, but “smaller” — is to continue the reduction until
one gets to the trivial base case, which in is our case: counting the number
of shortest paths between the only vertically or only horizontally connected
points:

x = a + b

a = c + d

b = d + e. (4.1)

In this way, we reduce the computation of x until we get to points to which the
number of shortest paths from A is one (Figure in 4.2). The pattern of numbers
that emerges in the grid is the Pascal triangle, shown in Figure 4.3, rotated
by 45 ◦. The recursive law underlying the Pascal triangle is the same: An
internal number is the sum of the two neighbors “upstairs,” and the marginal
numbers equal one. The positive-diagonal levels are labeled by k = 0, 1, 2, . . .,
the horizontal levels are labeled by n = 0, 1, 2, . . .. The entries of the triangle
are denoted by (

n

k

)
.
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

k = 0

k = 1

k = 2

n = 0

n = 1

n = 2

Figure 4.3: The Pascal triangle. The positive diagonals are la-
beled by k, the horizontal levels by n.

This entity is usually called the binomial coefficient “n choose k.” Our obser-
vation that the number of paths can be calculated from the number of paths
ending in previous nodes (i.e., equation 4.1), in terms of n and k yields the
following recursive formula

(
n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
(4.2)

With the base-case defined as
(

n

0

)
:=

(
n

n

)
:= 1 .

The binomial coefficients are completely determined, as they can be computed
for any n and k by building up the triangle employing the recursion relation
in Equation (4.2).

(Note that, algorithmically speaking, simply applying the recursion would
lead to a very inefficient computation: After all, computing the coefficient
would be reduced to, ultimately, adding up 1’s. The reason for the inefficiency
is that the (smaller) subproblems to which the initial problem is reduced are
solved over and over again, even if they have been already. The remedy when
such simple recursion fails in this way is dynamic programming : Filling up a
table with the intermediate results (in our case: the Pascal triangle) to avoid
the repetitions.)

We can now write the number of shortest paths by setting n = d + r and
k = r to obtain

x =
(

d + r

r

)
.
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Counting Step Sequences. A second way to approach the problem is to
take into account the different step sequences: We denote a step down with a
capital D and a step to the right with R. Every sequence of steps forming one
of the shortest paths from A to B as, for instance,

R1D1R2R3 · · · Dd−1DdRr

contains r steps to the right and d steps down. A first idea is that the number
of shortest paths from A to B is the number of permutations of these d + r
steps, which equals (d + r)!:1.

(d + r) · (d + r − 1) · (d + r − 2) · 2 · 1 = (d + r)!

This, however, counts each paths multiply, since permuting the different steps
down among each other has no effect on the path. Specifically, the two se-
quences

R1R2D1 R2R1D1

lead to the same path. More precisely, we have counted each path how many
times? The number of permutations among the D’s is d!, and of the R’s r!
correspondingly, so d!r! times altogether. Thus, the number x of paths in
question is

x = (r + d)!
r! · d!

.

The fact that the two approaches yield the same result means for the binomial
coefficients, replacing d + r = n, r = k and d = n − k, that

(
n

k

)
= n!

k!(n − k)!
= n(n − 1)(n − 2) · · · (n − k + 1)

k(k − 1)(k − 2) · · · 2 · 1
. (4.3)

Let us now close the circle and show the recursive formula directly for the
explicit representation of the binomial coefficients. More specifically, we show
that the right-hand side of 4.3 satisfies the base conditions and the recursion
relation. Let us first check the base case: By convention 0! = 1. Indeed,

n!
0!n!

= 1 .

We verify the recursion relation:
n!

k!(n − k)!
+ n!

(k + 1)!(n − k + 1)!
= n!

(k − 1)!(n − k)!k
+ n!

(k − 1)!(n − k)!(n − k + 1)

= n!(n − k + 1 + k)
k!(n − k + 1)

= (n + 1)!
k!(n + 1 − k)!

1The number of permutations (i.e., different total order relations on a set) of n elements
is n!. To see this, imagine we put the n elements one by one into an order. For the first
element, we can choose among n elements, for second among n − 1, and so on. We obtain,
therefore, n · (n − 1) · · · 2 · 1 = n! different orders (or permutations).
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This yields the recursion relation (note that we merely shifted the index relative
to equation 4.2).

We clarify the origins of the terms “choose” as well as “binomial” connected
to the coefficients.

Subsets. Why do we say “n choose k” referring to the binomial coefficient?
Because this is the number of ways in which we can choose k out of n elements.
More statically,

(
n
k

)
is equal to the number of subsets of size k of an n set.

To show that, we prove that the number of k-element subsets of an n-
element set satisfies the same recursion relation, including the base cases, as
the binomial coefficient. There is one subset with zero elements — the empty
set — and one subset with n elements — the set itself: The base case works.

For the recursion relation, let us consider a set containing n + 1 elements.
How many k-element subset does this set have? We argue recursively: Let us
single out the (n + 1)-th element of the set. The number of k-element subsets
of the full set is the number of k-subsets of the n-set (without the singled-out
element) plus the number of (k − 1)-subsets of the n-set (for counting the k
including the singled-out element). Thus we obtain

#(k out of (n + 1)) = #(k out of n) + #((k − 1) out of n).

This is again the recursion relation from equation 4.2.

Binomials. A binomial2 is an expression of the form (x + y)n. What is the
connection to the coefficients? If we carry out the multiplication and write the
binomial as a sum of products instead of a power of a sum (as given), we get

(x + y)n = (x + y) · (x + y) · · · (x + y)
= (x · x · · · x)︸ ︷︷ ︸

=xn

+ (y · x · · · x)︸ ︷︷ ︸
=yxn−1

+ . . . + yn .

In order to get one summand, we choose one variable from each of the brackets.
In total, there are 2n summands, containing each n factors. We can now collect
factors that appear in the sum multiple times. For instance, the summand xn

appears only once, since x has to be chosen from all brackets to get this term.
The summand y · xn−1 appears n times. Why? It corresponds to the number
of possibilities to choose the one bracket (among n) from which we choose the
y-factor. Correspondingly, the term xn−kyk appears

(
n
k

)
times. Together, we

get

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k .

That’s it!
2Take care, it is often confused with “binominal.”
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Figure 4.4: Urn with three elements.

4.2 Urn models
How many combinations of k elements can be drawn from an urn containing
n elements (as shown in Figure 4.4)? The number of different combinations
depends on whether the order of the combinations matters, and whether the
elements are put back after each draw. To understand these cases better, we
first consider the following example before turning to the general case.
Example 4.2. To keep matters simple, let us set n = 3 and k = 2. We will
now go through all the four cases in detail.

Ordered, with repetition. After each draw, the element is put back into
the urn. So for each draw, there are n choices. As the order matters, the two
combinations (x, y) and (y, x) are not equal, similar to the Cartesian product,
and we therefore obtain the following 9 combinations:

(1, 1) (1, 2) (1, 3)
(2, 3) (2, 2) (2, 3)
(3, 3) (3, 2) (3, 3)

Ordered, without repetitions. Elements once drawn from the urn are not
put back again. Thus, the number of choices reduces by one with each draw
and we obtain the following 6 combinations:

(1, 2) (1, 3)
(2, 3) (2, 3)
(3, 3) (3, 2)

Unordered, with repetition. Again we put the elements back after each
draw, but the order of the drawn combination does not matter. That is, we
regard the combinations above and below the diagonal in the matrices above
as equal. Therefore, we are left with 6 combinations:

(1, 1) (1, 2) (1, 3)
(2, 2) (2, 3)

(3, 3)
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Unordered, without repetition. If we do not put back the elements after
each draw, the combinations with twice the same element, i.e., those on the
diagonal, cannot occur. Thus we are left with the following 3 cases:

(1, 2) (1, 3)
(2, 3)

We would now like to generalize from the example above to arbitrary n
and k. The matrix picture is somewhat misleading as it is merely helpful in
the case k = 2. One rather multiplies the number of choices as we will see.

Ordered, with repetition. For each of the draws, there are n choices. So
the number of combinations is

n · n · · · n︸ ︷︷ ︸
k times

= nk.

Ordered, without repetition. If the elements are not returned to the urn,
the number of choices decreases by one with each draw. Thus the number of
combinations is

n · (n − 1) · (n − 2) · · · (n − k + 1) =: nk.

The special case k = n yields the number of permutations of n elements, i.e.,
nn = n!, as mentioned already before.

Unordered, without repetition. The number of unordered combinations
of k elements without repetition corresponds to the k-element subsets of a
set with n elements. Recall that two sets are equal if they contain the same
elements, independent of the order. Thus, the number of combinations is given
by the binomial coefficient:

(
n

k

)
= n!

k!(n − k)!

Unordered, with repetition. The last case, with repetition but unordered,
is slightly more complicated. A vote is an example of this case. The order
of the votes does not matter, but merely how many votes each candidate got.
Imagine 3 candidates and 20 voters. Therefore, n = 3 and k = 20.3 How
many different distributions of votes are there? As the order does not make

3As repetitions are allowed, the number of draws k might as well be bigger than the
number of elements in the urn, n.
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a difference, we might as well order the votes such that the votes for the first
candidate come first and then the ones for the seconds, etc.:

1 . . . 1 | 2 . . . 2 | 3 . . . 3︸ ︷︷ ︸
20 votes

For arbitrary numbers of candidates and voters we similarly obtain

1 . . . 1 | 2 . . . 2 | . . . | n · · · n︸ ︷︷ ︸
k votes

with n − 1 separators |. In this notation the separators also indicate the votes.
Left of the first separator are the votes for the first candidate, left of the second
separator the votes for the second candidate and so on and so forth. We can
therefore write

� � . . . � | � . . . � | . . . | � . . . �︸ ︷︷ ︸
k stars

The combinations are characterized merely by the order of stars and separa-
tors. To see how many arrangements there are, we take n − 1 + k positions
and fill them either with stars or with separators. Then there are

(
n − 1 + k

n − 1

)
=

(
n + k − 1

k

)

different arrangements for k stars and n − 1 separators as this corresponds to
k-element subsets of an (n + k − 1)-element set (or equivalently to k-element
subsets by the symmetry of the binomial coefficient)4.

The extensionally axiom of set theory establishes a connection to unordered
combinations. Two sets that differ only by a permutation of the elements are
equal, analog to unordered combinations. The emergence of the binomial
coefficient is a result of this analogy.

4.3 Rules and strategies
When one is faced with a counting problem of some set, it is often possible
to count parts of this set using the standard urn models. What remains is
then the problem of composing the partial solutions to determine the number
of elements of the set in question. We discuss some principles, some of them
trivial, one — “inclusion/exclusion” — which allow for exactly this.

4One could also consider the number of permutations of all n+k−1 stars and separators.
Then we have to divide by the number of permutations among the stars and among the
separators as they are indistinguishable. So we obtain the binomial coefficient again.
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−

Figure 4.5: The elements in the intersection are counted twice
and have to be subtracted again.

The sum rule. Consider a family (Ai)i=1,...,n of mutually disjoint sets, i.e.,

Ai ∩ Aj = ∅ ∀i �= j .

Then the size of the union of these sets is the sum of the sizes of the sets:
∣∣∣∣∣

n⋃
i=1

Aj

∣∣∣∣∣ =
n∑

i=1
|Ai| .

The product rule. For a family of sets (Ai)i=1,...,n, disjoint or not, the size
of the Cartesian product of the family is equal to the product of the sizes of
the individual sets Ai: ∣∣∣∣∣

n×
i=1

Ai

∣∣∣∣∣ =
n∏

i=1
|Ai| .

The equality rule. Two finite sets A, B have the same number of elements
if there exists a bijective function f : A → B: The function establishes a
one-to-one correspondence between the elements of A and B.

The principle of inclusion/exclusion. We generalize the sum rule above
to sets that are not mutually disjoint. Let us first consider the cases of families
of two and three sets. The union of two sets, disjoint or not, is of size

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2| .

The rationale is: If we simply add the two sizes, then the “overlap,” i.e., the
elements that are in both sets, are counted twice; hence, we have to “remove
them once” (see Figure 4.5).
Example 4.3 (The size of the union of two general sets.). How many of the
numbers 1, 2, 3, . . . , 100 are divisible by 2 or by 5? The numbers that are
divisible by 2 form a set A1 with 50 elements, the numbers divisible by 5 a set
A2 with 20 elements. Their intersection has size 10. Therefore,

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2| = 60 .
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What is remarkable already in this example: Counting one set if reduced here
to counting three sets — what have we won?

Let us consider the case of three sets. Again, we first sum up the sizes of the
individual sets. Then, we subtract the sizes of the three pairwise intersections.
We have now counted exactly once (as it should be) the elements that are in
exactly one of the sets, and in exactly two. But what about the elements that
are in all three sets? We have counted them thrice and then subtracted thrice,
so in the end, we have not counted them at all. Thus, we need to add them
at the end. We already sense now the continued change of signs that gave the
name to the principle:

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3|
− |A1 ∩ A2| − |A1 ∩ A3| − |A2 + A3|
+ |A1 ∩ A2 ∩ A3| .

Instead of the thought just displayed, we could also reduce the case of three
sets to repeated application of the case of two:

|(A1 ∪ A2) ∪ A3| = |A1 ∪ A2| + |A3| − |(A1 ∪ A2) ∩ A3|︸ ︷︷ ︸
|(A1∩A3)∪(A2∩A3)|

= |A1| + |A2| − |A1 ∩ A2| + |A3| − (|A1 ∩ A3| + |A2 ∩ A3|) .

This step turns out to be crucial in our — recursive — proof of the general
case of n sets. It states that the size of a union of sets is equal to the sum of the
sizes of the individual sets, minus the sum of the sizes of pairwise intersections,
plus the size of threewise intersections, minus the sizes of the intersections of
quadruples, etc. You see now where the name comes from.( And you also see
how much simpler it must often be to count intersections than unions: After
all, the price is that we have to count an exponential number of them.)

Theorem 4.1 (Inclusion/Exclusion). The size of a union of sets (Ai)i=1,...,n

is given by
∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

r=1
(−1)r−1

∑
1≤i1<i2<...<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣ . (4.4)

The sum in the statement is over all families if size r.

Proof. Induction over n. The case cases n = 1, n = 2, and n = 3 have been
checked above. (Actually, the case n = 2 is not only important as a base case,
but is explicitly invoked in the induction step.) Let us assume the statement
is valid for all numbers up to n ≥ 2. Consider a family of (n + 1) sets — of
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which we single out the (n + 1)st set.
∣∣∣∣∣
n+1⋃
i=1

Ai

∣∣∣∣∣ =

∣∣∣∣∣

(
n⋃

i=1
Ai

)
∪ An+1

∣∣∣∣∣ =

∣∣∣∣∣
n⋃

i=1
Ai

∣∣∣∣∣ + |An+1| −

∣∣∣∣∣

(
n⋃

i=1
Ai

)
∩ An+1

∣∣∣∣∣
︸ ︷︷ ︸

=|⋃n
i=1(Ai∩An+1)|

=
n∑

r=1
(−1)r−1

∑
1≤i1<i2<...<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣ + |An+1| +

−
n∑

r=1
(−1)r−1

∑
1≤i1<i2<...<ir≤n

∣∣∣∣∣
r⋂

k=1

(Aik
∩ An+1)

∣∣∣∣∣

The last line is of the form of Equation (4.4). To see this, we expand Equation
(4.4) with (n + 1). First, we split of the term r = 1, then all the terms with
ir = n + 1:

n+1∑
r=1

(−1)r−1
∑

1≤i1<i2<...<ir≤n+1

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣ =
n∑

k=1

|Ak| + |An+1| +
n+1∑
r=2

. . .

=
n∑

k=1

|Ak| + |An+1| +
n∑

r=2
(−1)r−1

∑
1≤i1<i2<...<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣ +

+
n+1∑
r=2

(−1)r−1
∑

1≤i1<i2<...<ir−1≤n

∣∣∣∣∣
r−1⋂
k=1

Aik
∩ An+1

∣∣∣∣∣

=
n∑

k=1

|Ak| + |An+1| +
n∑

r=2
(−1)r−1

∑
1≤i1<i2<...<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣ +

−
n∑

r=1
(−1)r−1

∑
1≤i1<i2<...<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik
∩ An+1

∣∣∣∣∣

= |An+1| +
n∑

r=2
(−1)r−1

∑
1≤i1<i2<...<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣ +

−
n∑

r=1
(−1)r−1

∑
1≤i1<i2<...<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik
∩ An+1

∣∣∣∣∣

In the penultimate step, the index r in the last term was shifted. The emerging
(−1) factor was taken in front of the sum. In the last step, the sum

∑n
k=1 |Ak|

was absorbed into the third term as r = 1.

Example 4.4 (Opera). During an opera evening with 500 guests, all the coats
in the cloakroom get disordered, and every guest gets back a random coat
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afterwards. Is it more likely that at least one person gets back their own
coat or that nobody gets back their own coat? (Try to guess it.) Let us first
consider a simpler case with three guests. The three coats in the cloakroom
are permuted. At least one person gets their own coat if the permutation has
a fixed point. For instance, the permutation

(
1 2 3
2 1 3

)

has the fixed point 3. If no guest retrieves their own coat, then the corre-
sponding permutation is fix-point free (we abbreviate such a permutation by
FPFP). For three coats, there are exactly two FPFPs (out of 6):

(
1 2 3
2 3 1

) (
1 2 3
3 1 2

)

The probability that nobody retrieves their own coat is, hence, 1/3, whereas
the probability that at least one person retrieves the own coat is, correspond-
ingly, 1 − 1/3 = 2/3. How do we calculate this if the number of guests (and,
therefore, the number of coats) is larger? This question can be answered using
the inclusion/exclusion principle 4.4: We express the set containing all per-
mutations with at least one fix-point, denoted hereafter A, as a union of sets,
and use “inclusion/exclusion” to determine the size of this union.

Let Ai be the set of permutations for which i is a fixed point. (There can
be other fixed points besides it, or not.) Then,

n⋃
i=1

Ai = A ,

and the size of A can be calculated using “inclusion/exclusion.” Again, at first
sight it might not look like a gain to reduce counting a single set to counting
an exponential number of sets. But it is: First, many of these sets have the
same size, which is easy to determine, and the number of sets in such groups
is easy to determine as well.

Note first that the size of each of the Ai is equal to the number of permuta-
tions of (n−1) elements, i.e., (n−1)!. Furthermore, the size of the intersections
of two different Ai is equal the number of permutations of (n − 2) elements,
i.e., (n − 2)!. And so on:

|A| =

∣∣∣∣∣
n⋃

i=1
Ai

∣∣∣∣∣ =
n∑

r=1
(−1)r−1

∑
1≤i1<i2<...<ir≤n

∣∣∣∣∣
r⋂

k=1

Aik

∣∣∣∣∣

=
n∑

r=1
(−1)r−1

∑
1≤i1<i2<...<ir≤n

(n − r)! .
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For each r, there are
(

n
r

)
terms in the inner sum. Employing the equality(

n
r

)
= n!

(n−r)!r! , we obtain

|A| =
n∑

r=1
(−1)r−1

(
n

r

)
(n − r)! = n!

n∑
r=1

(−1)r−1

r!
.

The number of fixed-point-free permutations is then

n! − |A| = n!

(
1 −

n∑
r=1

(−1)r−1

r!

)
= n!

n∑
r=0

(−1)r

r!
.

Using that the exponential can be written as

ex =
∞∑

k=0

xk

k!
, (4.5)

we obtain, with x = −1, that the number of fix-point-free permutations tends
to n!/e:

lim
n→∞

#FPFP(n) = n!
e

:

The probability that nobody retrieves their own coat is 1/e ≈ 1/2.71828 and
thus smaller than the probability that at least one person retrieves their own
coat.

What is remarkable about this is that the probability is (essentially) in-
dependent of the number of people, i.e., it converges (very fast) to a number
that is neither 0 nor 1.

4.3.1 The pigeonhole principle

“If there are more pigeons inside a pigeonry than holes in the pigeonry, then
at least two pigeons have to leave through the same hole.” That’s it!

Theorem 4.2 (Pigeonhole Principle). When n objects are distributed among
k boxes, with k < n, then there is at least one box containing at least two
objects.
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Proof. Induction over k. In the base case, with k = 1, there is merely one box
containing all n elements, with n ≥ 2. For the induction step, we prove that
the assertion holds for k + 1 boxes, assuming that it holds for k boxes. Let us
consider the (k +1)-th box separately, and distinguish the following two cases:

1. The box (k + 1) contains at least two objects.

2. The box (k + 1) contains at most one object. Then, the other n − 1
objects are distributed among the remaining k boxes. If n > k + 1, then
n − 1 > k, and by induction hypothesis there is one box among these n
which contains at least two objects.

This completes the induction step, and the proof.

The following example illustrates a beautiful application of the principle.
Example 4.5 (Monotonic subsequences). If we are given a finite sequence of
distinct numbers as, for instance,

(1, 17, 5, 3, 20, 2, 4) ,

then a subsequence is a selection of these numbers with the order given by the
original sequence, such as

(17, 20, 4) .

A subsequence is monotonically increasing if the numbers are in ascending or-
der. Correspondingly, the sequence is monotonically decreasing if the numbers
are in descending order. The sequence

(1, 3, 20)

is monotonically increasing, whereas the sequence

(17, 5, 3, 2)

is monotonically decreasing.
The question is: For a sequence of length n, what is the best lower bound on
the length of the longest monotonic subsequence? The answer is:

A sequence of length m2 + 1 has always a monotonic subsequence of length
m + 1, and this bound is “tight” (i.e., it cannot be improved in general).

Proof. By contradiction. Let us consider a sequence of m2 + 1 elements,

(a1, . . . , am2+1) .
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1

1

2

2

3

3

m2

m2

m

Figure 4.6: A sequence with m2 elements and monotonic subse-
quences with m elements.

We assume the opposite of what we desire to show, namely, that the longest
subsequence has length l ≤ m. To each number ai in the sequence we now
associate the length ci of the longest monotonically increasing subsequence
starting with ai and in particular containing ai, and the length di of the longest
monotonically decreasing subsequence starting with ai. For each ai, we obtain
a pair (ci, di). Both, ci and di are less or equal to l and, therefore, less
or equal to m. Thus, there are m2 possible different ordered pairs. The
pigeonhole principle states that there are at least two numbers with the same
values (c, d):5

(a1, . . . , ai , . . . , aj , am2+1)

(c, d) (c, d)
We distinguish now the two cases:

ai < aj Then we can construct a monotonically increasing subsequence of length
c + 1 by adding ai to the subsequence starting from aj . This yields a
contradiction, with c being the length of the longest subsequence starting
from ai.

ai > aj One obtains a monotonically decreasing subsequence of length d+1. This
is in contradiction, with d being the length of the longest monotonically
decreasing subsequence starting from ai.

Therefore, the assumption that the length of the longest monotonic subse-
quence is less or equal to m leads to a contradiction.

Is the bound tight? Yes: We can come up with a sequence of length m2 of
which the longest monotonic subsequence has length only m; see Figure 4.6.

5The m2 possible pairs correspond to the holes and the m2 + 1 elements of the sequence
to the pigeons.
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B

A

ma

nb

Figure 4.7: One can count the elements in S either row after row,
or column after column.

4.3.2 Double counting
There are two different ways of counting the element of a relation S from A to
B, i.e., of a subset of a Cartesian product A×B, i.e. in a relation, S ⊆ A×B:
We can count the set column by column using the subsets

ma := {b ∈ B | (a, b) ∈ S} ⊆ S ,

or count the elements in S row by row using the subsets

nb := {a ∈ A | (a, b) ∈ S} ⊆ S .

Of course, we obtain the same result, namely, the size of S in both cases:

|S| =
∑
a∈A

|ma| =
∑
b∈B

|nb| .

Example 4.6. What is the “average” number of divisors of a number k? To
answer this question, let us introduce the function counting the number of
divisors:

ν(k) := |{l > 0 | l divides k}| .

The function takes the following values for small arguments:

ν(1) = 1 ν(2) = 2 ν(3) = 2 ν(4) = 3 ν(5) = 2 ν(6) = 4 .

Furthermore, for every prime number p, we obtain ν(p) = 2. We define what
we mean by “average number of divisors”: For a given number n, we are
interested in calculating

n∑
k=1

ν(k)
n

.
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Figure 4.8: The divisors l of the numbers k ≤ n.

Summing up the values of ν(k) is equivalent to counting the dots in Figure 4.8
column by column. The columns have a irregular pattern — whereas the
rows are completely regular: Every second number is even, every third is
divisible by three, etc. In particular, the number of points within each row is
given by

⌊
n
k

⌋
: The fraction n/k is rounded to the next smaller integer value.

(The floor function is used since 0 is not in the set: You always have to wait
maximally long for the first point.) Using the principle and replacing the sum
over columns by the sum over rows, we obtain

1
n

n∑
k=1

ν(k) = 1
n

n∑
l=1

⌊n

k

⌋
.

The rest is calculus: How does this number grow with n? To answer this
question, we estimate the sum from above. Note, first,

n

l
− 1 ≤

⌊n

l

⌋
≤ n

l
.

Therefore, we can bound the average as
(∑

l=1

1
l

)
− 1 ≤ 1

n

n∑
l=1

⌊n

l

⌋
≤

n∑
l=1

1
l

.

Thus, we require bounds on the sum
∑n

l=1 1/l. As shown in Figure 4.9, we can
approximate with functions and integrate to obtain the area below the graph.
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1

Figure 4.9: Estimation using integrals.

The upper bound is then
n∑

l=1

1
l

≤ 1 +
∫ n

1

1
x

dx = 1 + ln(n) ,

where ln is the natural logarithm (i.e., with respect to the basis e). Similarly,
we obtain the lower bound

n∑
l=1

1
l

≥
∫ n

0

1
x + 1

dx = ln(n + 1) ≥ ln(n) .

Putting all this together, the average of the number of divisors for numbers
between 1 and n can be estimated as

ln(n) − 1 ≤ 1
n

n∑
l=1

⌊n

l

⌋
≤ ln(n) + 1 .

4.4 Binomial coefficients: Properties and ap-
proximations

As shown above, the number of k-sets that can be chosen from an n-set is
given by the binomial coefficient:

(
n

k

)
= n!

(n − k)!k!
=

(
n

n − k

)

4.4.1 Symmetry
The binomial coefficient reflects the symmetry of the Pascal triangle as

(
n

k

)
=

(
n

n − k

)
.
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n

n − rr

k

k − tt

Figure 4.10

This can also be seen from the formula above.

4.4.2 Vandermonde identity
There are

(
n
k

)
possibilities to choose k elements from a set containing n ele-

ments. Imagine now that there are r blue and n − r red elements in the set of
n elements. Then there are

(
r

t

)
·
(

n − r

k − t

)

possibilities to choose k elements such that t of these are red, while k − t are
blue. If we add the numbers of k-sets from an n-set with t = 0 elements red,
t = 1 elements red, t = 2 elements red until we reach k red elements, it is just
the same as not bothering about the colors, and we are left with

(
n
k

)
. Thus,

we obtain the equality

(
n

k

)
=

k∑
t=0

(
r

t

)
·
(

n − r

k − t

)

Note that
(

n
k

)
is set to zero whenever k > n.

4.4.3 Binomial theorem
For the sake of completeness, we mention again the binomial theorem (see also
4.3):

(x + y)n =
n∑

k=1

(
n

k

)
xkyn−k
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If we set x = y = 1, we obtain the sum over one row in Pascal’s triangle:

2n =
n∑

k=1

(
n

k

)

This yields the number of all subsets of an n-set and thus the size of the power
set.

Another interesting special case is x = −1 and y = 1. This yields
n∑

k=1

(
n

k

)
(−1)k = 0k = 0 . (4.6)

That is, summing over any row with alternating sign yields zero. For rows
with n being odd, the number of terms in the row is even. So 4.6 for n being
odd follows directly from the symmetry of the Pascal triangle. For any row
with n even it is not obvious though.

From this we can draw a conclusion for the number of strings with even
and with odd parity. The parity of a string is even if the number of ones in
the string is even and it is odd if the number of ones in the string is odd.
So the left-hand side of the equation 4.6 is just the number of even parity
strings minus the number of odd parity strings. Thus, the number of odd
parity strings and the number of even parity strings are always equal. For
strings with an odd number of elements, there is a bijection that shows the
equal number of even and odd parity strings. One simply flips all bits. So, for
instance,

010 �→ 101.

For strings with an even number of elements, the fact is not that obvious but
follows from equation 4.6.

4.4.4 Approximation of the binomial coefficient
For large numbers n and k, the binomial coefficient is rather hard to compute.
Therefore, we would like to have an estimate. First of all, we derive upper and
lower bounds. To obtain a lower bound, we write the binomial coefficient with
factorials and rearrange the factors as follows.

(
n

k

)
= n!

k!(n − k)!
= n(n − 1)(n − 2) · · · (n − k + 1)

k(k − 1)(k − 2) · · · 1

= n

k
· n − 1

k − 1
· n − 2

k − 2
· · · n − k + 1

1

If n ≥ k then the factor n/k is less or equal to (n − 1)/(k − 1) as

n(k − 1) = nk − n ≤ (n − 1)k = nk − k ⇒ n

k
≤ n − 1

k − 1
.
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Figure 4.11: The graph of the binary entropy h(x).

Repeating this argument for the subsequent factors, we obtain the lower bound

(
n

k

)
≥

(n

k

)k

How much bigger can
(

n
k

)
be than (n/k)k? To answer this question we now

derive an upper bound. Consider first the following ratio.

(
n
k

)
(

n
k

)k
= n(n − 1)(n − 2) · · · (n − k + 1)

nk︸ ︷︷ ︸
≤1

kk

k(k − 1)(k − 2) · · · 1︸ ︷︷ ︸
≤ek

≤
(n

k

)k

ek .

We have employed once more the formula with factorials and arranged the
factors in a convenient way. To upper bound the second part, we used the
expansion of the exponential (4.5). One summand is less than the entire series.

Summarizing this we obtain the bounds:

(n

k

)k

≤
(

n

k

)
≤

(n

k

)k

· ek .

Stirling’s formula provides a more precise estimate of the factorial

n! ≈
√

2πn
(n

e

)n

and can thus be used to estimate the binomial coefficient. The factors of e
cancel as ek · en−k/en = en/en = 1. Further, we drop all square root factors
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and obtain
(

n

k

)
= n!

k!(n − k)!
≈ 1√

2π

√
n√

k(n − k)

(n

e

)n ( e

k

)k
(

e

n − k

)n−k

≈ nn

kk(n − k)n−k
= 1(

k
n

)k (
n−k

n

)n−k

=

(
1

(
k
n

)k/n (
n−k

n

)(n−k)/n

)n

.

In the last two steps we merely reformulate the expression in a form that turns
out to yield some insight later on.

Let us now define x := k/n. Thus, (n − k)/n = 1 − x, and we can write
the estimate above as

(
n

k

)
≈

(
xx(1 − x)1−x

)−n = 2n(−x log2 x−(1−x) log2(1−x)) .

Further, we introduce the function

h(x) := −x log2 x − (1 − x) log2(1 − x).

The function is symmetric about x = 1/2 and becomes 0 for both x = 0 and
x = 1 and 1 for x = 1/2. The graph of h is shown in Figure 4.13. All this new
formalism yields the estimate

log2

(
n

k

)
≈ nh(x).

Why should we bother to write the estimate in a such a complicated way?
The function h plays an important role in information theory, more concretely
in results on data compression.

4.5 An excursion into information theory: Data
compression

How much can we compress data without losing information? Let us consider
a bit string generated by n coin flips. If the probability for heads and tails is
1/2 we cannot compress this string. But if the probability for obtain zero is
larger than 1/2, i.e.,

x := P (0) >
1
2

,

then there is redundancy, and we can compress to a smaller bit string of length
l as depicted in Figure 4.12. As we are dealing with a probabilistic source of
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n bit strings, we refine the question. What is the best compression, i.e., the
smaller l, on average, without loss of information?

To answer this question, let us consider the set of all possible n-bit strings.
What strings are likely to occur if they are produced with source generating a
zero with probability x > 1/2 and one with a probability 1 − x?

The single most likely string is then the zero string 0n with a probability
of xn. If, for instance, x = 0.9, then P (0n) is 0.81 for n = 2 and 0.729 for
n = 3. For n → ∞ this probability tends toward zero.

Any string with equally many zeros and ones occurs with a probability of

xn/2 · (1 − x)n/2 .

As there are
(

n
n/2

)
of these strings, the probability to draw any such string is

(
n

n/2

)
xn/2(1 − x)n/2 ≈ 2nh(1/2)xn/2(1 − x)n/2

= 2nxn/2(1 − x)n/2

=
(

2 ·
√

x(1 − x)
)n

,

which approaches 0 when n increases. Here, we used that
√

x(1 − x) < 1/2
for any x > 1/2, as can be seen from the graph shown in Figure 4.14. This
is related to the geometric fact, that the rectangle with the largest area for a
given circumference is a square.

Thus, for long strings, i.e., large n, the probability to draw a string with
equally many zeros and ones is very small.

Which strings are instead drawn with high probability? Intuitively, we
would expect the string with n · x zeros and n · (1 − x) ones to be rather likely.

011001011100010100000010010001000011010

0001010011010110011

l

n

Figure 4.12: Compression of an n-bit string to an l-bit string.
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{0, 1}n

0n

strings with n/2 ones
and n/2 zeros

strings with x · n zeros
and (1 − x) · n ones

Figure 4.13: The set of all strings of length n with various subsets.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

Figure 4.14: The graph of the function f(x) =
√

x(1 − x).
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The probability to draw any such string is in fact

P [# zeros = x · n] =
(

n

x · n

)
xx·n(1 − x)n·(1−x)

=
(

n

x · n

)
2n(x log(x)+(1−x) log(1−x)) =

(
n

x · n

)
2−nh(x)

≈ 2nh(x)2−nh(x) = 1.

Therefore, a lossless compression protocol merely encodes the roughly
(

n
x·n

)
≈

2nh(x) strings with n · x zeros and (1 − x) · n ones using l = nh(x) bits. So the
binary entropy h(x) characterizes the ultimate data compression rate or the
relative “information content” of a source.

4.6 Special counting problems

4.6.1 Equivalence relations
Recall from set theory that equivalence relations yield a partition of a set. The
question we are now interested in this: How many equivalence relations are
there for a given set with n elements? Let us first consider some simple cases
with small n:

• n = 1: There is just one partition and therefore merely one equivalence
relation.

• n = 2: There is are two partitions, the one containing both the elements,
and the one with each element being contained in its own partition:

• n = 3: There are 5 partitions: one containing all elements, one with each
element in its own partition, and three with two elements contained in
the same partition:

101

© CC BY 4.0, https://vdf.ch/discrete-mathematics-e-book.html



4.6. SPECIAL COUNTING PROBLEMS

1

0 1

0 1 1

0 1 3 1

0 1 7 6 1

0 1 15 25 10 1

k = 0

k = 1

k = 2

n = 0

n = 1

n = 2

Figure 4.15: Stirling’s triangle of the second kind.

Instead of trying to directly find a general answer to the question above,
we first consider a slightly simpler question: How many partitions into exactly
k sets are there? We denote this number by Sn,k. One can now deduce a
recursive formula similar to the binomial coefficient. To do so, we separate the
n-th element and distinguish the following two cases:

1. The n-th element is in its own a set. Then we have to find a k − 1
partition of the remaining n − 1 elements.

2. The n-th element is an element of a set containing also other elements.
Imagine the other n − 1 elements are partitioned into k sets. Then, we
could add the n-th element to any of those k sets.

These considerations yield the following recursive formula:

Sn,k = Sn−1,k−1 + k · Sn−1,k .

This relation resembles the recursion relation for the binomial coefficient.
There is merely the additional factor k. Indeed, after considering the base
cases

S0,0 = 1,

Sn,0 = 0 ∀n > 0,

Sn,n = 1,

we can build up a similar triangle, called Stirling’s triangle of the second kind.
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The number of all partitions is then given by the sum over row n in the
triangle:

Bn :=
n∑

k=0

Sn,k

There is no closed formula for this number. So, to calculate the number, one
has to actually build up the triangle before calculating the sum over the row.

4.6.2 Permutations
A permutation is a bijective map:

π : {1, . . . , n} → {1, . . . , n} .

A common notation for permutations is
(

1 2 · · · n
π(1) π(2) · · · π(n)

)
.

Example 4.7. The following is a permutation of 5 elements:
(

1 2 3 4 5
5 4 3 2 1

)
.

The permutation has a fix point, 3 �→ 3, and two cycles of 2:

1 �→ 5 �→ 1 2 �→ 4 �→ 2

Therefore, applying the permutation twice, yields the identity, π2 = id. In
other words, the permutation is self-inverse, π−1 = π.
Example 4.8. Let us consider a permutation with a more complicated cycle
structure: (

1 2 3 4 5 6 7 8 9 10
5 9 8 10 7 6 1 3 4 2.

)

There are the following cycles:

• A fix point at 6:

6

• There is one cycle of 2:
3 8
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• There is one cycle of 3:
1

5

7

• There is one cycle of 4:
410

2 9

The counting problem we consider is this: How many permutations of n
with exactly k cycles are there? As before, we aim for a recursion relation.
Abusing slightly the notation, we denote the number permutation of n elements
with k cycles by Sn,k. We can then separate the n-th element and distinguish
the following two cases:

1. n is a fix-point and therefore adds a cycle by itself. It remains to take
into consideration the permutations of n − 1 elements with k − 1 cycles.

2. We can fit n into existing cycles. So for permutations of n − 1 elements
with k cycles, there are n − 1 position where we could put n, essentially
after each of the existing elements independent of which cycle they are
in.

Therefore, we obtain the following recursive formula:

Sn,k = Sn−1,k−1 + (n − 1) · Sn−1,k .

As there is no permutation of n elements without any cycles and merely one
with n cycles, we obtain the base cases:

S0,0 = 1 Sn,0 = 0 Sn,n = 1 .

This yields another Stirling’s triangle.

We are now equipped with logical reasoning, mathematical objects, and
tools for counting them. We now proceed to the next step: how to analyze
relations and processes. In a nutshell, to the graphs!
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1

0 1

0 1 1

0 2 3 1

0 6 11 6 1

0 24 50 35 10 1

k = 0

k = 1

k = 2

n = 0

n = 1

n = 2

Figure 4.16: Stirling’s triangle of the first kind.

4.7 Exercises
Exercise 4.1 (Binomial coefficients). Prove with a combinatorial argument that
the following statements are true:

1. For all n ≥ 1,
(2n

2
)

= 2
(

n
2
)

+ n2.

2. For all n ≥ 1,
(2n

n

)
=

∑n
k=0

(
n
k

)2.

Exercise 4.2 (Light bulbs).

1. Show that the sum of all numbers in the n-th row of the Pascal triangle
is 2n:

∑n
k=0

(
n
k

)
= 2n.

2. Show that, if we put, in the n-th row of the Pascal triangle, alternating
signs, then the sum vanishes:

∑n
k=0 (−1)k

(
n
k

)
= 0.

Conclude from this that when each one of n light bulbs fails with proba-
bility 1/2, independently of the others, then the probability that an even
number fails is 1/2.

Exercise 4.3 (Inclusion/exclusion).

1. How many of the numbers from 1 to 300 are divisible by 4, 6, or 15?
(Here, or refers to the inclusive OR)

2. In a village, there are three clubs. Only ten people of the village belong
to no club. Club A has 20, club B 50, and C 40 members. If we pick
any two clubs, there are always exactly five people in both. Finally, two
people are in all clubs. How many people live in the village?
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Exercise 4.4 (Strings). Determine the number of binary strings of length n in
which the partial string 01 occurs exactly twice. An example (of length 10) is
1111001110.
Exercise 4.5 (Children – hard). A new family moved into the neighboring flat;
your nosy flatmate already informed you that they have two kids. One day,
you see the couple taking the elevator with their young daughter. What is the
probability that the other child is a boy?

While making small-talk, they say that one of their children is 20 years
old. That is definitely not the young girl. Does this new information change
the probability that this second child is male?
Exercise 4.6 (The party).

1. You are at a party with n people. If everybody clinks glasses with
everybody, how many times do you hear “ping!”?

2. Unfortunately, the party does not go that well, not everybody clinks
with everybody. You are bored and think about parities, and you ask
yourself whether the number of people who clinked with an odd number
of others can be odd? What do you think?

3. After having found that answer, you ask yourself whether there exist two
people at the party who clinked with exactly the same number of others.
What do you think?

4. By the way, there were exactly 20 subjects people talked about at the
party. Exactly 10 people spoke about each of these subjects. Every
person has spoken about exactly four of the topics. How many people
were at the party?

Exercise 4.7 (Power plugs). You have invited 5 of your friends for dinner. At
some point in the evening, everyone has to charge their phone at the same
time. There are 8 plugs in your house: 2 in the kitchen, 3 in the living room,
and 1 each in the bathroom, the hall, and the bedroom.

1. Everyone (including you) would like to charge their phone in the living
room, thus you decide to determine the three people who will. What is
the probability that you will end up charging your phone in the living
room?

2. In how many ways can you plug in the different phones in the house?

3. As you are the host, you decide not to charge your phone, and to plug
every phone in a different room. How many different dispositions of
phones can you come up with?
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Exercise 4.8. How many triangles can one find in Figure 4.17?

1

2

345

6

7

Figure 4.17: How many triangles do you see?
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Chapter 5

Graph Theory

5.1 Motivation
Graphs are extremely useful models for many discrete problems, as they allow
to focus the analysis on specific relations between objects.

Example 5.1 (Error-free communication over noisy channels). A channel is an
abstract model of a device used to transmit some information (for instance, a
wire, an optical fiber, or a radio signal). As shown in Figure 5.1, a channel
can be depicted by a graph, where the input is connected with each of the
possible outputs. Generally, channels are noisy, in that errors might occur
while transmitting the signal. Therefore, a given input can potentially yield
different outputs in different uses of the channel.1

x0 y0

x1 y1

x2 y2

x3 y3

...
...

xn yn

Figure 5.1: A graph for a noisy channel. An input x ∈ X can be
mapped to more than one output y ∈ Y.

1In a more complete model, one would assign a probability distribution over the outputs
for each input. Typically the “right” output would occur with rather high probability. If
the channel is noisy, there are other outputs that occur with probability larger than zero
and cause the ambiguity for the receiver.
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x1

x2
x3

x4

x5

x6

x7 x8

Figure 5.2: The ambiguity graph of a noisy channel. The red
markers show an optimal coding.

Nodes representing the input in the graph might be connected to more than
one element in the output alphabet Y. As outputs can stem from different
inputs, the receiver cannot tell which input the sender chose. Is there a way to
transmit information without error through such a noisy channel? To answer
the question, we first consider a different graph representation.

An ambiguity graph shows the conflicting inputs in a noisy channel. The
nodes correspond to the inputs in X . Two nodes are connected if the corre-
sponding inputs might yield the same output.

In order to resolve the ambiguity of the inputs, the sender and the receiver
agree on a code: The sender uses merely a subset of the input alphabet X
without conflicts in the output. This subset has to be chosen such that none
of the elements are neighbors in the ambiguity graph: This is called an inde-
pendent set. The optimal code is an independent set of maximal size; to find
one in a given general graph is a problem that is NP-complete. (In Figure 5.2,
the codewords of the optimal code are highlighted in red.)

The noisy typewriter channel. We consider an explicit example of a noisy
channel. Claude Shannon, in his seminal text from 1948, laying the basis for
information theory, considered a noisy typewriter. For simplicity, we consider a
reduced alphabet of 5 instead of 26 letters. Through some error the following
letter is also hit every now and then; this error happens cyclically: When
typing the last letter, sometimes the first one is hit. We obtain the following
graphs:

0 0
1 1
2 2
3 3
4 4

0

1

2 3

4
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0
0

1

1

2

2

3

3

4

4

Figure 5.3: Ambiguity graph for the case of using the channel
twice. Instead of showing all edges, the blue and the red lines
give two examples of ambiguous pairs. The red circles indicate
an optimal code for this new channel.

The corresponding optimal code has then two codewords and can, therefore,
transmit one bit with each use of the channel: The zero-error capacity — the
number of bits that can be sent unambiguously per use of the channel — is
at least one. Is it equal to one? We are suspicious since one single bit can
already be sent with an application of the same channel of smaller size 4.

The zero-error capacity is in fact the average number of bits set for multiple
uses of the channel; can this help? Let us consider the case of using the channel
twice. The new alphabet is then the Cartesian product X 2 with 25 elements,
as shown in Figure 5.3. We can now search for unambiguous codewords among
these 25 ordered pairs. The optimal code indicated by the red circles allows
then for 5 distinct codewords to be transmitted without error. Therefore the
zero error capacity of the channel in bits is at least log2 5/2, which is larger
than 1. It turns out that combining a larger number of channel uses does
not help further: Lovasz showed that the zero-error capacity of this channel is
equal to the lower bound obtained from pairs of channel uses.

5.2 Basic notions
Definition 5.1 (Graph). A graph G = (V, E) consists of

• a non-empty, finite vertex set V , i.e., 0 < |V | < ∞. The elements of V
are called vertices or nodes.

• an edge-set E ⊆ V × V : E is a relation on V 2.

2This definition of graphs allows for loops, but not for more than two edges connecting
the same pair of nodes. Graphs not having such a limitation are called multigraphs and
appear in these notes only in reference to a historical example (cf. Section 5.5.1).
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Example 5.2. The ambiguity graph in Figure 5.2 is formally defined by the
set of vertices V = {x1, x2, x3, x4, x5, x6, x7, x8} and by the set of edges E =
{{x1, x2}, {x2, x3}, {x3, x4}, {x3, x5}, {x5, x6}, {x6, x7}, {x6, x8}}.

Definition 5.2 (Undirected graph). A graph G is undirected if

(u, v) ∈ E ⇔ (v, u) ∈ E .

In this case, edges are sometimes taken to be unordered sets (instead of or-
dered pairs): e = {u, v}. When an undirected graph is drawn, a single line is
normally drawn between u and v, instead of a pair of arrows.

Definition 5.3 (Simple graph). A graph G is called simple if it does not
contain loops:

Definition 5.4 (Neighborhood of a vertex). For a vertex v ∈ V we call the
set

Γ(v) := {w ∈ V | (v, w) ∈ E}
the neighborhood of v:

v

w1

w2

w3

w4

w5

Definition 5.5. The number of edges towards a node v is called the in-degree
deg−(v):

v

The number of edges from a node v is called the out-degree deg+(v):

v
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For undirected paths the number of edges ending in a node v is called the
degree deg(v):

v

In a directed graph, any ingoing edge of a node is an outgoing edge of
another node. Further, any edge is an ingoing (respectively outgoing) edge for
some node. Thus, we obtain for directed paths the following equality:

∑
v∈V

deg−(v) =
∑
v∈V

deg+(v) = |E| .

Similarly, it holds for undirected paths
∑
v∈V

deg(v) = 2 |E| .

5.2.1 Basic notions for simple undirected graphs
Definition 5.6 (Way). A v1-vl-way with length l is a sequence of vertices
w = (v1, . . . , vl) with

(vi, vi+1) ∈ E ∀i ∈ {1, . . . , l − 1}

v3 = v6

v5

v1

v2

v4

v7

Definition 5.7 (Path). A v1-vl-path is a v1-vl-way for which all vertices are
distinct (i.e., a way without loops):

v3
v1

v2

v4
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Definition 5.8 (Circuit or cycle). A circuit or cycle is a closed path, namely,
a sequence of pairwisely distinct vertices c = (v1, . . . , vl) satisfying

(vi, vi+1) ∈ E , ∀i = 1, . . . , l − 1 ,

(vl, v1) ∈ E .

Definition 5.9 (Subgraph). The pair H = (V ′, E′) is a subgraph of G = (V, E)
if

V ′ ⊆ V E′ ⊆ E E′ ⊆ V ′ × V ′ .

Given a vertex set Ṽ ⊆ V , the subgraph of G induced by Ṽ , denoted by G[Ṽ ],
is the subgraph of V with vertex set Ṽ and all possible edges which are also
in G:

∀u, v ∈ Ṽ : (u, v) ∈ E ⇒ (u, v) ∈ Ẽ .

(a) Graph G with highlighted set Ṽ (b) Subgraph H = G[Ṽ ]

Definition 5.10 (Connected components). Let (Vi)i∈I be a partition of the
vertex set of a graph G such that all elements within each partition Vi are
connected by a path. That is

∃(u, v)-path ⇔ ∃i ∈ I : u, v ∈ Vi .

Then the induced subgraphs G[Vi] are called the connected components of G:
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Note that the existence of a path between vertices leads to an equivalence
relation on the set of vertices. Correspondingly, it can also be seen as a
partition. The graphs induced by the parts are the connected components.
Definition 5.11 (Bridge). An edge e ∈ E is called a bridge if the graph
G′ := (V, E \ {e}) has one more connected component than G.
Theorem 5.1. A graph G = (V, E) has at least |V | − |E| connected compo-
nents.
Proof. Observe first that the graph G = (V, ∅) has |V | connected components,
each containing just one vertex. Any edge that is inserted into the graph
reduces the number of connected components by at most one. If it connects
two previously separate connected components, it reduces the number by one.
If the edge connects two vertices within a connected component the number
of connected components remains the same. This implies the statement.

Corollary 5.2. If a graph G is connected, i.e., all components are connected
with one another by paths and there is just one connected component, then the
number of edges and vertices is related by

|V | − |E| ≤ 1

The following is an example of a connected graph:
w0

w1

w2 w3

w4

The number of vertices is |V | = 5, whereas the number of edges is |E| = 10.
Therefore, the difference is well below the bound from the corollary above, as

|V | − |E| = −5 < 1.

Indeed, we could remove all internal edges and one of the outer ones and still
obtain a connected graph:

w0

w1

w2 w3

w4
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In this minimally connected graph, the difference of the number of edges and
the number of vertices reaches the bound from the corollary above. All edges
are bridges. These minimally connected graphs are called trees.

5.3 Trees
A tree is a minimally connected graph. A graph containing trees as its con-
nected components is called a forest. The following graph is a forest with 3
trees:

The following graph is not a tree, as it contains a cycle:

Definition 5.12 (Forest). An undirected simple graph without cycles is a
forest.

Definition 5.13 (Tree). A connected forest is a tree.

Definition 5.14 (Leaf). A node v ∈ V with deg(v) = 1 is a leaf.

Theorem 5.3. Every tree with at least two vertices has at least two leaves.

Proof. As there are at least two vertices, and the tree is connected, there is
at least one edge e ∈ E, connecting two vertices u, v ∈ V . From both these
vertices, we can walk in opposite directions away from one another. As long
as the deg(vi) > 1 of the nodes along the way, one can choose another edge
for the next step:

v u

e

As there are no cycles and merely finitely many vertices, one eventually reaches
a leaf.

The following are different ways of implying that a graph is a tree.
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Theorem 5.4. Given an undirected simple graph G = (V, E) the following
statements are equivalent:

1. G is a tree, i.e., a connected graph without cycles.

2. G is connected and |V | = |E| + 1.

3. G has no cycles and |V | = |E| + 1.

4. G is connected and every edge is a bridge.

5. G has no cycles; if an additional edge is added to the graph, it obtains a
cycle.

6. For all vertices v, u ∈ V , there exists a unique u − v-path.

In total, 2·
(6

2
)

= 30 implications are claimed. By transitivity of implication,
it is, however, sufficient to show a loop of implications. Any statement then
follows from any other by just following the implications in the loop.

Proof. We will show the implications in the following cycle.

(1)(6)

(4)

(2) (3)

(5)

(1) ⇒ (6). By the definition of connectedness, there exists a u − v-path for
all pairs of vertices u, v ∈ V . It remains to show that this path is unique. We
show this by contradiction. More precisely we show that if the path is not
unique, we can construct a cycle in the graph.

Let us assume that there are 2 different paths connecting the vertices u
and v:

v u

Where the two paths split, we can start constructing a loop taking one path
until we reach the vertex where they rejoin and return on the other path.
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(6) ⇒ (4). As there exists a path for any pair u, v ∈ V , we obtain imme-
diately that G is connected. It remains to show that every edge is a bridge.
Again, we show this by contradiction. Assume there exists an edge e ∈ E that
is not a bridge. Then, we can remove e and G is still connected, i.e., there is
a path connecting the vertices adjacent to e. In other words, with e there are
two paths connecting these two vertices. This contradicts the uniqueness of
the path.

(4) ⇒ (2). As connectedness is already given, it remains to show that
|V | = |E| + 1 if every edge is a bridge. We show this by induction over
the number of edges.

Base case If |E| = 1 then there are two vertices and the equation is satisfied.

Induction step As all edges are bridges, we can simply split the graph into
two connected components by removing any of the edges:

G1 G2

Then, we are left with two connected graphs. By induction hypothesis
(and considering that all remaining edges are still bridges), we have

|E1| + 1 = |V1| |E2| + 1 = |V2|

Therefore, we obtain the equality we were looking for by adding these
two equations:

|E1| + |E2|︸ ︷︷ ︸
=|E|−1

+2 = |V1| + |V2| = |V |

(2) ⇒ (3). We show by contradiction that a connected graph G satisfying
the equality |V | = |E| + 1 has no cycles. Let us assume that G has a cycle.
Then, there exists an edge that is not a bridge. We can, therefore, remove that
edge to obtain another connected graph with one edge less, G′ = (V, E \ {e}).
For this graph it holds then

1 ≥ |V | − (|E| − 1) = |V | − |E| + 1 = 2 ,

a contradiction.
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(3) ⇒ (5). We have to show that adding an edge e′ to the graph creates a
cycle. Thus we have from (3) that |V | = |E| + 1 = |E′| for E′ := E ∪ {e′}. We
show by induction over the number of vertices that whenever |V | ≤ |E′|, then
there is a cycle.

Base case The first interesting case is |V | = 3. If the number of edges is also
3, we obtain the graph

which obviously contains a cycle.

Induction step We distinguish two cases. If there exists a leaf in the graph,
we merely remove that vertex and the corresponding edge. This reduces
the number of vertices and the number of edges by one. If |V | ≤ |E|
then also |V | − 1 ≤ |E| − 1 and the graph contains a cycle by induction
hypothesis. So, also the graph containing the leaf has a cycle.
If there is no leaf, then all vertices have deg(v) ≥ 2. Then we can simply
construct a cycle by going from one vertex to the next. As there is no
leaf, there is no dead-end. And as the number of vertices is finite, we
have to end-up at the initial vertex sooner or later.

(5) ⇒ (1). The graph G does not contain any cycles. So it remains to
show that G is connected. Again we use an indirect proof. Let us assume
that G has two connected components. Then, we could add a vertex e′ to G
without creating cycles by linking the two connected components. This yields
a contradiction with (5), as this insertion of an edge did not create a cycle.

5.3.1 Counting trees: Cayley’s theorem
After having derived different characterizations of a tree, we now turn to the
following question: How many trees are there with n vertices?

The number of different graphs for n = 1, . . . , 5 is given in the last column.

# vertices # trees
n = 1 1
n = 2 1
n = 3 1
n = 4 2

n = 5 3
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Unfortunately, the general question, i.e., the same question for a general
number n of vertices, is hard to answer. We replace it by an easier one: How
many marked trees exist with n vertices? Here, the nodes are numbered from
1 to n, and a different numbering leads a priori to a different tree. In this
view, the following trees are not equal:

v0

v1 v2

�=
v0

v1 v2

�=
v0

v1 v2

while there corresponding unmarked trees are equal:

= =

The question in our focus now can be rephrased, asking for the number of
different “spanning trees” of the complete graph (clique) with n vertices, Kn.

Definition 5.15 (Spanning Tree). Given a connected (undirected, simple)
graph G = (V, E), a graph H = (V, E′) with the same vertex set is called a
spanning tree of G if

• H is a tree;

• E′ ⊆ E.

Example 5.3. The connected graph

has the spanning tree

Generally, there exist many different spanning trees for a given graph. It is
an interesting algorithmic problem to find the one that optimizes, for instance,
the total weight, given that each vertex has such a weight; the most famous
algorithms are greedy and due to Kruskal and Prim.

Let us now return to the question: How many spanning trees are there for
complete graphs Kn with n vertices? Let us first consider some cases with
small n.
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Example 5.4. In a completely connected graph, any vertex is connected with
any other. We will now consider the spanning trees for n = 1, 2, 3, 4:

• K1: There is merely one vertex and thus only one spanning tree.

• K2: There is merely one connected graph with two nodes. The single
spanning tree is just the graph itself.

• K3: The completely connected graph K3

v0

v1 v2

has three spanning trees

• K4: The completely connected graph K4

v0v1

v2 v3

has 16 spanning trees.

It is natural to group them into to sets: The “snake” type and the
“star” type. The first 12 of these, the “snakes,” are actually the same if
we considered them as unmarked graphs: We call them isomorphic. By
rearranging the vertices of a given tree among these 12, we can obtain
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any other of the 12. An example of such a rearrangement is this

It preserves neighbor-relations. Any pair in the edge set (u, v) ∈ E is
also in the edge set E′ of the graph obtained after the re-arrangement.
Functions with this property are called isomorphisms and are formally
defined below.

Definition 5.16 (Isomorphism). Two graphs G = (V, E) and G′ = (V ′, E′)
are isomorphic, G ∼= G′, if there exists a bijective function f : V → V ′ such
that

∀u, v ∈ V : (u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′ .

The bijective function f that preserves the edge relations is called an iso-
morphism.

As the number spanning trees of completely connected graphs grows pretty
quickly, it is rather tedious to write down all of them for K5. We can now take
a different approach employing isomorphism. First, we consider the different
unmarked trees with n vertices. Then, we derive the number of marked trees
isomorphic to it, i.e., the number of possibilities to put the numbers 1 to 5 for
obtaining (isomorphic but) different graphs.
Example 5.5. We consider the unmarked trees with 5 vertices and how many
marked graphs are isomorphic to each of them.

• The “snake” graph

0 1 2 3 4

π(0) π(1) π(2) π(3) π(4)

corresponds for instance to the marked graph with the vertices in in-
creasing order. For any permutation of the 5 vertices, we obtain another
isomorphic graph — except when we simply reverse the order, the graph
stays the same. Therefore, there are 5!/2 = 60 different marked graphs
corresponding to this unmarked graph.
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• The “star” graph

corresponds to 5 different marked graphs. Swapping the leaves does not
change the graph but merely changes the center of the star. So, for each
of the 5 vertices being the center, we obtain a different graph.

• The third type is the graph

Again, the permutations of the vertices give the isometries. But swap-
ping the two leaves as indicated by the red arrow does not change the
graph. We, therefore, have a similar symmetry as above and have to
divide again the number of permutations 5! by 2 to obtain 60 graphs.

So, in total we are left with 125 = 53 different spanning trees (or different
marked trees with 5 vertices).

Considering the examples above we might guess that in general the number
of spanning trees of completely connected graphs Kn is nn−2. Indeed, this is
true.

Theorem 5.5 (Cayley). The number of different marked trees with n nodes
(i.e., the number of spanning trees of the completely connected graph Kn) is

nn−2 .

Proof. We count marked trees with two additional marks, a green circle and a
red square, both put to an arbitrary node, possibly also the same for both:

2

3

4

1

5

There are n2 different ways to place these marks. If, for instance, n = 2, then
we have the following 4 possible placements:
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We show that there exist nn different marked trees with n vertices and two
additional marks. This then implies what we want, that there are

nn

n2 = nn−2

marked trees without the additional marks.
For counting the number of trees with marks, we construct a bijection from

these trees to the functions from a set of n elements to itself:

{f : {1, . . . , n} → {1, . . . , n}} .

There are nn such functions.
We illustrate the bijection we have in mind with an example:

f =
(

1 2 3 4 5 6 7 8 9 10
9 8 3 9 3 2 1 6 4 1

)

We represent this function by a directed graph:

5
3

10

7
1 9 4

2 8

6

In every component, there must exist a cycle, as there is only a finite number
of nodes, and there is no “end point” if one applies the map over and over
again (i.e., follows the arrows). Restricting the function to the vertices that
are contained in cycles yields a permutation, i.e., a bijective map from that set
to itself. The set of vertices contained in some cycle is

M = {2, 3, 4, 6, 8, 9}

and the corresponding permutation is the restriction

f |M =
(

2 3 4 6 8 9
8 3 9 2 6 4

)
.

We encode this permutation in a “snake” tree:

8 3 9 2 6 4
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This is usually compared to an animal with the green circle being the “head,”
the red square the “tail,” and the encoding of the permutation the “spinal
cord.” We add the remaining elements to the tree as follows:

1

5

7 10

8

3

9 2 6 4

The edges are to be read as arrows towards the spine. This procedure yields a
tree with head and tail for any function f : {1, . . . , n} → {1, . . . , n}. It remains
to show that we have an inverse map from trees to functions.

Inverse direction. Let us construct a function for the following tree with
head and tail.

2

6

4 5

8 9

1

3

7 10

From the spine, we directly obtain the permutation, as the first row is given
by convention by the numbers in increasing order:

f |M =
(

1 3 7 10
10 7 3 1

)

Reading the other edges as arrows towards the spine, we obtain the entire
map:

f =
(

1 2 3 4 5 6 7 8 9 10
10 1 7 2 2 3 3 7 7 1

)

This procedure works similarly for any tree.
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5.4 Some special graphs
Complete graphs or cliques are simple, undirected graphs with an edge
between any pair of vertices:

K1 K2 K3 K4 K5

For a complete graph with n vertices, denoted Kn, there are then

|E| = n(n − 1)
2

=
(

n

2

)

edges.

Cycles (also circles or circuits) are graphs with all nodes contained in one
single cycle without additional edges. The smallest cycle is the triangle:

C3 C4 C5

The cycle Cn with n vertices has n edges.

Mesh graphs are graphs with a node set:

V = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n} .

The edge set contains merely the closest neighbors of each vertex

((i1, j1), (i2, j2)) ∈ E ⇔ |i1 − i2| + |j1 − j2| = 1

and no diagonals:
n

m

Sometimes, the mesh is interpreted in a cyclic way. Depending on how we
connect the boundaries, we obtain graphs that resemble different topologies.

126

© CC BY 4.0, https://vdf.ch/discrete-mathematics-e-book.html



Discrete Mathematics

For instance, the nodes on the very right can be connected to the ones on the
very left as follows:

This graph has the shape of a cylinder. One might not only connect the nodes
horizontally but also vertically and obtain a torus shaped graph:
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Another variant would be to invert the order to obtain a Moebius strip.

Complete bipartite graphs. The maximal elements, in terms of connec-
tivity, among the set of bi-partite — two-colorable, such that no vertices of the
same color are connected — graphs are the complete bipartite graphs Km,n:
The graph has m+n vertices, m in one color and n in the other, and all nodes
of different colors are connected. We have |E| = mn:

m n

Hypercubes. The vertices of the d-dimensional hypercube are the d bit
strings, i.e.,

V = {0, 1}d = {d-bit strings} .

There are 2d vertices. The edges are then given by the pairs with Hamming
distance 1.
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Definition 5.17 (Hamming distance). The Hamming distance between two
bit strings of same length, dH(x, y), with x, y ∈ {0, 1}d, is the number of bits
in which x and y differ.

For instance, dH(0110, 1010) = 2 and

dH(0101, 1010) = dH(0000, 1111) = 4.

The edges of the d-dimensional hypercube are

(u, v) ∈ E :⇔ dH(u, v) = 1 .

Every vertex has d neighbors, i.e., ∀v ∈ V : deg(v) = d. The total number of
edges is

|E| = d · 2d

2
= d · 2d−1 .

as each of the 2d degrees is d.
We draw the graph as follows: For obtaining the graph Qd+1 we draw twice

the graph Qd. To one of the two we add a 0 after all bit strings labelling the
vertices, to the second respectively a 1. Finally, we add edges to connect the
corresponding vertices of the two copies of Qd.

We start from Q0, containing merely the empty word ε

ε

Then the hypercube Q1 is constructed following the procedure above:

ε ε ε0 ε1 0 1

Repeating the same process yields Qd for larger d. For Q2 we get

00 10

01 11

00 10

01 11

Q3 is the three dimensional cube.

000 100

010 110

001 101

011 111

000 100

010 110

001 101

011 111
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Similarly, we obtain the 4-dimensional hypercube.

This is how we can imagine four dimensions. Or 17, for that matter.

5.5 Euler tours and Hamilton cycles
5.5.1 Bridges of Königsberg
In 1736, Leonhard Euler considered the question of whether there is a tour
crossing every of the seven bridges in Königsberg

exactly once. This question is today often said to mark the beginning of graph
theory. The situation is reflected in the following (multi-)graph:

We are looking for a closed way that passes each edge exactly once — a so-
called Euler tour.

Definition 5.18 (Euler Tour). An Euler tour is a closed sequence of edges of
a graph G = (V, E) that contains each edge of the graph exactly once.
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As the degree of any of the vertices in the graph above is 3 or 5, thus odd,
there does not exist an Euler tour.
Theorem 5.6 (Euler). A connected graph has an Euler tour if and only if all
degrees are even. That is

G has an Euler tour ⇔ ∀v ∈ V : deg(v) is even.

Proof. We first show that the condition

∀v ∈ V : deg(v) is even

is necessary for the existence of an Euler tour. This follows from the observa-
tion that any vertex is reached and left the same number of times. Whenever
we reach or leave the edge, we have to use an other edge to form an Euler
tour. Thus, the number of available edges has to be even if we finally have to
have passed all edges. Note that the same holds for the starting vertex.

It remains to show that the condition is sufficient. We construct an Euler
tour for a graph satisfying the condition above. First, we choose an initial
vertex v1 ∈ V . Following any yet unused edge one now proceeds to other
vertices. As there is an even number of edges ending at each of the vertices,
and as edges are always used (i.e., removed) in pairs (arrive + leave), we always
finds such an unused edge for continuing, except at v1. As the number of edges
and the number of vertices are finite, we must eventually end up in v1, and
thus obtain a first closed way:

v1

This way may fail to contain all edges already. Then, as the graph is connected,
there must be a vertex v2 in the already-found way with still (at least two)
unused edges. We use this vertex v2 as the starting point of an additional way,
using the same procedure of following the unused edges. (Note that it is still
true that all degrees inn the graph are even since, again, we removed edges
always in pairs with respect to any vertex: arrive and leave.) The red arrows
show how to interpret this as just one cycle:

v1

v2 v3
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Repeating this iteratively until we used all edges yields the desired Euler tour.

Example 5.6. All vertices in the complete graph K5 have degree 4. Therefore,
K5 has an Euler tour. An example is this: We start from the vertex at the
top, follow the outer circle, and then the inner edges:

Example 5.7.

• The complete graph Kn has an Euler tour if and only if n is odd:

deg(v) = n − 1 ∀v ∈ V .

• The hypercube Qd has an Euler tour if and only if d is even:

deg(v) = d ∀v ∈ V .

The given proof above uses a simple greedy algorithm3, that finds an Euler
tour in linear time in the number of edges |E|. Finding on Euler tour is, hence,
among the computationally easiest problems (you simply have to go through
the entire graph, and you have it). If we modify the problem a little —
replacing “edge” by “vertex,” we end up with a hard problem, the Hamilton
cycles.

Definition 5.19 (Hamilton Cycles). A cycle that visits every vertex exactly
once is called a Hamilton cycle. A graph containing such a cycle is called
Hamiltonian.

Example 5.8. The following graphs are Hamiltonian.

• The cycles Ck are Hamiltonian for all k ≥ 3.

• The complete graphs Kn contain the cycles Cn for all n ≥ 3, and there-
fore a Hamilton cycle. Thus these are Hamiltonian:

3At each vertex we choose any unused edge, independent of any previous choice. The
choice does not depend on any global properties.
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• The wheel graph:

Example 5.9. These graphs are not Hamiltonian.
• Any tree is not Hamiltonian as it does not contain any cycles at all.

• The following graphs do neither contain any Hamilton cycles:

We would now like to address the question whether mesh graphs are Hamil-
tonian. The graph M1,2

is a tree and thus not Hamiltonian. The two following two mesh graphs, M2,2
and M2,3,

are Hamiltonian as the outer cycles connect all nodes. The mesh graph M3,3

is not Hamiltonian. To see this, note first that the graph is two-colorable, i.e.,
bipartite:

A bipartite graph can be Hamiltonian only if it contains the same number of
nodes of each of the two colors: Along the (closed) Hamiltonian cycle, the
colors must switch in every step:
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In consequence, we have that

Mm,n is Hamiltonian ⇔ m · n is even

This can be seen as follows. From the argument above, we directly obtain
that m · n being even is a necessary condition: This proves “⇒”. It remains
to show that the condition is also sufficient : “Whenever the product is even,
there exists a Hamilton cycle.” Now, if the product is even, then at least one
of the two, m and n, is even. Without loss of generality we can assume that
it is m. We construct a Hamilton cycle as follows:

n

m

For the complete bipartite complete graphs Km,n, the condition m = n is
necessary and sufficient for the graph to be Hamiltonian:

What about the hypercubes? Note first that Q0 and Q1, are not Hamilto-
nian: They are trees, and thus cycleless. The square Q2 and the cube Q3 are
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Hamiltonian:

Using the Hamilton cycle on Q3, we can now construct a Hamilton cycle
on Q4. We remove two corresponding edges and link the two cycles at the
corresponding vertices:

This procedure can be applied iteratively to obtain a Hamilton cycle for any
Qd, as soon as d ≥ 2, as the following inductive proof illustrates:

Base case. As we have seen above, the Q2 is Hamiltonian.

Induction step. By induction hypothesis, there exists a Hamilton cycle for
Qd. We use it to construct a Hamilton cycle for Qd+1:

Qd0

a10

a20

Qd1

a11

a21
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The process removes two corresponding edges, (a10, a20) and (a11, a21), and
then adds (a10, a11) and (a20, a21).

The problem whether a general graph is Hamiltonian is believed to be hard:
It is NP-complete. We have seen the two extrema of computational hardness
(linear time vs. NP-complete) in two very similar-sounding problems: Euler
vs. Hamilton.

5.6 Planar graphs
Definition 5.20 (Planar graphs). A graph G = (V, E) is planar if it can be
drawn in the plane such that no edges cross.

Example 5.10. The complete graph K4 is planar:

The complete graph K5 is not planar: One can shift two of the inner edges
outside, but there remains a crossing. Shifting further edges outside introduces
crossings outside:

At the beginning of the course we said that the bipartite graph K3,3 is not
planar (without proof):

To actually that the latter two graphs are not planar, we derive properties
all planar graphs share. If a graph does not have one of these properties, it is
not planar.

Theorem 5.7 (Euler’s polyhedron formula). Let G = (V, E) be a planar
connected graph which divides the plane into f regions (including the region
outside the graph). Then, the number of regions, of vertices and of edges satisfy
the following equation:

|V | + f − |E| = 2. (5.1)
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Note that the inverse implication does not hold. A graph satisfying equa-
tion (5.1) is not necessarily planar.

In the Introduction to this course, we saw a proof of this statement using
spanning and dual trees. We will now consider a different, inductive one.

Proof. Note first of all that equation (5.1) holds for trees. As there are no
cycles, there is merely one region, i.e., f = 1. Furthermore, the number of
edges is one less than the number of vertices, |E| = |V | − 1. Thus one obtains

|V | + f − |E| = |V | + 1 − (|V | − 1) = 2 .

We can now reduce any other connected planar graph to a tree by removing
edges in cycles, as shown for the following graph:

Removing an edge of a cycle reduces the number of regions and the number
of edges by one, while the number of vertices remains the same:

f → f1 := f − 1 |E| → |E1| := |E| − 1 |V | → |V1| = |V | .

Thus, the value of the left-hand side for the new graph G1 = (V1, E1) with f1
regions is the same as before:

|V1| + f1 − |E1| = |V | + f − |E| .

137

© CC BY 4.0, https://vdf.ch/discrete-mathematics-e-book.html



5.6. PLANAR GRAPHS

The same holds for any other graph Gi = (Vi, Ei) resulting from removing
further edges to break apart cycles. Finally we end up with a tree that satisfies
Euler’s formula as seen above. Thus, Euler’s formula also holds for the initial
general planar graph.

Unfortunately, Euler’s formula is of no use to prove that K5 or K3,3 are
not planar: The notion of a region is not defined if there are crossings, and
f is undefined. We find bounds on the number of regions f , in terms of the
number of edges. In a simple graph, a region is bounded by three edges:

On the other hand, each edge bounds at most two regions. (This latter point
is why we argue with respect to the edges, not the vertices: It is also true
that every region is surrounded by three nodes, but a node can be a limit to
arbitrarily many regions; for instance, 100 edges can meet in a vertex.) We
obtain

3 · f ≤ 2 |E| ⇒ f ≤ 2
3

|E| .

Inserting this into Euler’s formula yields

|V | − |E| + 2
3

|E| ≤ 2 ,

and the following bound on the connectivity of planar graphs.

Corollary 5.8. Any planar graph with |V | ≥ 3 satisfies the following inequal-
ity:

|E| ≤ 3 |V | − 6 . (5.2)

The complete graph K5 violates this equation, as |V | = 5 and |E| = 10.
The complete bipartite graph K3,3 with |E| = 9 and |V | = 6, however, does
not violate the equation (5.2). We fix this issue by improving the bound on
the number of regions for bipartite graphs. A region in a bipartite graph is
bounded by at least 4 edges:

We conclude, as above,

4f ≤ 2 |E| ⇒ f ≤ 1
2

|E| .

Thus,
|V | − |E| + 1

2
|E| ≤ 2 .
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Corollary 5.9. A bipartite planar graph G = (V, E) satisfies

|E| ≤ 2 |V | − 4 . (5.3)

The bipartite planar graph K3,3 with |E| = 9 and |V | = 6 violates this
inequality.

Average degree. The inequalities (5.2) and (5.3) imply for the average
degree:

deg(v) := 1
|V |

∑
v∈V

deg(v) = 2 |E|
|V |

.

For all planar graphs, we have

|E| ≤ 3 |V | − 6 < 3 |V | ⇒ deg(v) < 6 .

For bipartite graphs,

|E| ≤ 2 |V | − 4 < 3 |V | ⇒ deg(v) < 4 .

Starting from the other end, let us ask what graphs are not planar:

• K5, K3,3.

• A graph that contains the K5 or the K3,3 as a subgraph.

• Subdivisions of such graphs. For a given graph G = (V, E) we add a
vertex v′ to the vertex set V and replace one of the edges (u, v) ∈ E
by the two edges (u, v′) and (v′, v). The new graph is then called a
subdivision of G.

The surprising fact was proven by Kuratowsky : This list is complete. In
a sense, this means that every non-planar graph “contains” in one way or
another our two specimens K5 and K3,3.

5.7 Graph colorings
Example 5.11. Imagine the following problem: An airline wants to find the
minimal number of planes to operate some given flights. Each flight is repre-
sented by a node. Two nodes are connected if the flights cannot be operated
by the same plane. Then the minimal number of colors required to color the
vertices, such that any two neighboring vertices have a different color, yields
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the number of planes required. As an example, let us try finding a colorings
of the so-called Petersen graph:

Two colors do not suffice, as can be seen from the outer cycle. It contains an
odd number of vertices and thus requires a coloring with three colors:

We can extend this coloring to the entire Petersen graph:

Therefore, in this case of ten flights, we would need at least three planes.

Definition 5.21 (Coloring). A k-coloring of a graph G = (V, E) is a function

c : V → {1, . . . , k} ,

such that any neighbours are assigned a different value, i.e.,

(u, v) ∈ E ⇒ c(u) �= c(v).

Definition 5.22 (Chromatic number). The chromatic number χ(G) of a graph
G is the minimal k such that a k-coloring of G exists.

Example 5.12. We consider the chromatic number of some special graphs:
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• Planar graphs Gp have a chromatic number less than or equal to 6 as we
have shown in the Introduction 1.4:

χ(Gp) ≤ 6 .

It can be shown that the chromatic number is actually smaller than or
equal to 4.

• Complete graphs Kn have χ(Kn) = n as every vertex needs its own color.

• The complete bipartite graphs have a chromatic number χ(Km,n) = 2
by definition.

• Mesh graphs are bipartite: χ(Mm,n) = 2 (except for m = n = 1).

• Hypercubes are bipartite: χ(Qd) = 2 for d ≥ q. This follows from
an inductive argument: Obviously, Q1 is two-colorable. If Qd is two-
colorable, then we can color the second Qd with flipped colors before
connecting the two to construct Qd+1.

• For the cycles, it depends on the parity of their length:

χ(Cn) =

{
2 n even
3 n odd

.

• Trees are two-colorable, χ(tree) = 2 (for any tree with at least an edge),
as we can arrange the nodes in ”levels.” Then all levels with odd parity
(depth) are colored in one color and those with even parity in another:

Theorem 5.10. A graph G = (V, E) is bipartite, i.e. two-colorable, if and
only if it contains no odd cycle, i.e., no cycle of odd length.

Proof. The implication ⇒ follows directly from the observation above. If G is
bipartite, it cannot contain an odd cycle, since then χ(G) ≥ 3. It remains to
show that, if G contains no odd cycle, then it is also bipartite. Let’s consider a
spanning tree of G. We can then color the levels with two colors as above. We
now need to show that there are no edges in G that connect two levels of the
same color. This follows from the observation that adding an edge connecting
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two vertices of levels with same parity – examples are indicated by dashed
lines below – always introduces an odd cycle, and thus a contradiction:

The theorem yields an efficient way, i.e., in linear time, to decide whether
a graph is two-colorable. To decide however whether a graph is 3-colorable is
an NP-complete problem. Again, we see the two extremes of computational
hardness in two very similar-sounding problems.
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5.8 Exercises
Exercise 5.1. Let n ≥ 3. Find the following:

1. What is the smallest m for which it is true that every graph with n nodes
and m edges has a cycle?

2. What is the greatest m for which it is true that every graph with n nodes
and m edges has no cycle?

3. What is the smallest m for which it is true that every graph with n nodes
and m edges is connected?

4. What is the greatest m for which it is true that no graph with n nodes
and m edges is connected?

Exercise 5.2 (Leaves). Show that every tree with a vertex of degree k has at
least k leaves.
Exercise 5.3 (Trees and Degrees). Let n ∈ N and k1 ≥ k2 ≥ · · · ≥ kn ≥ 1 ,
ki ∈ N. Show that there exists a tree with n nodes vi, i = 1, 2, . . . , n and
deg(vi) = ki for all i if and only if it holds

n∑
i=1

ki = 2n − 2 .

Exercise 5.4 (Cayley). Let Kn be the complete undirected graph with n ver-
tices: Every pair of nodes is connected by an edge. Theorem 5.5 shows that
Kn possesses exactly nn−2 different spanning trees. We now form a new graph
from Kn by leaving away exactly one edge, i.e., the connection between the
vertices v1 and v2. How many different spanning trees does the resulting graph
possess?
Hint. How many of the spanning trees of Kn contain the eliminated edge?
Exploit the symmetry of Kn.
Exercise 5.5 (Platonic Solids). In a platonic solid, all faces are the same regular
n polygon, the same number of which meet in every corner:

1. Decide which of the solids are Eulerian.

2. Decide which are Hamiltonian.

3. Show that all the platonic solids are planar graphs.

4. (hard) Prove that there are no further Platonic solids.
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Chapter 6

Cryptography

6.1 Diffie-Hellman key exchange
For millennia, information has been selectively disclosed through cryptography.
A first, Roman example is the Caesar cipher, which relied on permuting the
letters of a message according to a fixed permutation. The permutation, i.e.,
the key, was known to those sending and receiving the clandestine information.
All ciphers used before the 1970s relied on such a secret key that was shared
among the communicating parties and had to be kept hidden from possible
adversaries. This required the parties to meet, or send a trusted courier, before
sending the secure communication, and exchange the key.

In 1976, Whitfield Diffie and Martin Hellman published a protocol to estab-
lish a key using merely authenticated but public communication over a public
channel. Two parties, usually referred to as Alice and Bob, exchange unen-
crypted messages. Thus, even a potential adversary Eve can read the messages.
Nonetheless, Alice and Bob can generate a secret key Eve cannot retrieve.
Imagine: Two people talk publicly in a room, everyone can hear everything,
and in the end, they share a secret. . . This sounds like magic!

First of all, Alice sends Bob a large prime number p (∼ 200 digits). They
can use this number p to construct a trapdoor one-way function, i.e., a func-
tion that is easy to compute but hard to invert (one-way) without knowing a
particular piece of information called a trapdoor. Using this sort of function,
it is possible to establish the key. We now take a closer look at one particular
one-way function.

One-way function. Let us consider the function

x �→ Rp(2x) ≡ 2x mod p .
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s s?

Figure 6.1: Alice and Bob communicate through a public channel.
Even though Eve receives all their messages, she does not know
their shared secret.

Here, Rp(a) denotes the remainder of a divided by p. How can one compute
this function efficiently? Multiplying

2 · 2 · . . . · 2︸ ︷︷ ︸
x times

x times (where the “reduction modulo p” can be made after every step; so
at least the numbers never outgrow p) before taking the modulo requires x
multiplications. For large exponents, this is totally inefficient.

A more efficient algorithm: Let us first assume that x is a power of 2, i.e.,
x = 2k. Then

2(2k) =
(((

22)2
)2

· · ·
)2

︸ ︷︷ ︸
k times

one can compute the power by k = log2 x multiplication, each time multiplying
the result with itself. To generalize this to general x, we write the argument
in its binary expansion:

x = (xrxr−1xr−2 · · · x0)2 = x0 + 21 · x1 + 22 · x2 + . . . + 2r · xr .

The computation one has to perform turns into repeated squaring and multi-
plying :

2x = 2x0+21·x1+22·x2+...+2r·xr =
((

(2xr )2 · 2xr−1
)2

· · · 2x1

)2

· 2x0 .
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Figure 6.2: This illustrates the giant-step-baby-step algorithm.

Thus, we are left with 2r ≈ 2 · log x ≤ 2 · log p computational steps.
Computing the inverse

Rp(2x) �→ x

seems harder: One way is to multiply repeatedly 2 · 2 · 2 · · · and compare at
each step with Rp(2x) until equality holds. There is, however, a slightly more
efficient protocol. For some fixed number R < p, one calculates the giant steps
2R, R2R, 23R . . . and the baby steps 2x+1 = 2x · 2, 2x+2 = 2x · 22, . . . , 2x+R =
2x · 2R, as shown in Figure 6.2, until one encounters equality 2j·R = 2x+i.
Then, x = j · R − i. The number of computational steps is then

R + p

R
.

The optimal choice of R is roughly √
p: Then, there are therefore roughly

Θ(√p) steps. Note that
√

p = 21/2·log p

is still exponential in the input size, log p: Even the baby-step-giant-step pro-
cedure is by far less efficient than the computation of x �→ Rp(2x). Therefore,
the function is a good candidate for a one-way function.
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p

a

b

s = bx mod p s = ay mod p

x ≤ p y ≤ p

Rp(2x) =: a a

Rp(2y) =: bb

?

Figure 6.3: The Diffie-Hellman key exchange protocol.

The Diffie-Hellman key exchange protocol. Employing the one-way
function from above we can now devise a protocol for Alice and Bob to agree
on a shared key:

• Alice chooses a large prime p and sends it to Bob.

• Alice chooses a random integer x ≤ p and sends a := Rp(2x) to Bob.

• Bob chooses a random integer y ≤ p and sends b := Rp(2y) to Alice.

• Alice computes Rp(by) and Bob Rp(ay). These are the same numbers,
and thus their shared secret:

s := ay ≡ (px)y ≡ (py)x ≡ bx (mod p) .

Schematically the protocol is depicted in Figure 6.3.
Eve knows a, b, and p but neither x nor y. There is no more efficient way

known to compute s from a, b, and p than to first invert Rp(2x) and compute
x (or y). This inversion is believed to take a long time if the number x, y, and
p are sufficiently large. (Not on a quantum computer, however.)

There is an intuitive analogy with padlocks, depicted in Figure 6.4: Alice
and Bob have each two open padlocks of the same kind. (You can even imagine
them to be, a little impractically, without a key: They can be closed, but they
cannot be opened again. This is in fact a mechanical analog to a one-way
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a b

ss

Figure 6.4: Eve can copy the two closed locks sent by Alice and
Bob, but she cannot intertwine them to obtain the secret s.

function.) Both close one of the padlocks and send it to the other party. With
the remaining padlock, they can lock the two padlocks together. Even Eve can
intercept the messages and “copy” the closed locks. But as she cannot open
any of the two, she cannot lock them together to obtain the secret s.

6.2 The RSA cryptosystem
Symmetric cryptosystems. Until the late 1970s, publicly known cryp-
tosystems relied on Alice and Bob sharing the same key.1

Enc Dec

A B

K K

M M
C

Alice first uses the key K to encrypt the message. Bob eventually decrypts
the message using the very key K again. Therefore, such cryptosystems are
called symmetric.

1Except for this: Two entities had invented public-key encryption before that: The
British secret service, who kept it as a secret, of course, and Ralph Merkle, whose ideas were
beautiful, less practical, and totally unrecognized.
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Diffie and Hellman solved the issue of distributing the secret key K using
merely a public authenticated channel as we have seen above. They also
envisioned a completely new scheme employing different keys for encryption
and decryption, without having to rely on a shared secret key.

Public-key cryptosystems rely on a publicly known key PK to encrypt
a message. This key does, however, not allow decryption of the message. The
recipient knows the private (or secret) key SK required to decrypt the message.

Enc Dec

A B

PK

SKPK

M M
C

Diffie and Hellman could not provide a realization of such an asymmet-
ric or public-key cryptosystem. In 1977, however, Ron Rivest, Adi Shamir,
and Leo Adleman came up with a public cryptosystem employing the factor-
izing problem. Before turning to the protocol itself, we introduce the required
mathematical basis.

6.2.1 Euclid’s algorithm
Given a terrace of dimensions a × b, what is the length of the largest square
tile that can be used to exactly cover the terrace?

a

b

e × e
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We are actually looking for the greatest common divisor, gcd(a, b). One could
compute the gcd from the prime factors of a and b. There is, however, no effi-
cient algorithm known to compute the prime factors of a number. (Ironically,
RSA’s security depends on just that.) Instead, the “terrace picture” allows
deriving an efficient way to compute the gcd (without computing first all prime
factors). One can reduce the question to the same for smaller rectangles (à la
“divide et impera”): We can “subtract” from the full terrace the square b × b
and ask for the largest tile exactly covering what remains, (a − b) × b:

a − b

b

The answer is the same as for the rectangle a × b. We can then repeat this
over and over until we get to a square:

What if a is much larger than b, a � b? Then, we have to “subtract” the same
square b × b over and over again:

It is more efficient to directly reduce to the remainder Rb(a). In particular,
we have 0 ≤ Rb(a) < a. The algorithm consists of repeatedly reducing to
smaller rectangles ak × bk with alternately ak := Rb(ak−1), bk = bk−1 or ak =
ak−1, bk = Ra(bk−1). The longer side is replaced by the remainder of the
longer modulo the shorter (which becomes then the longer). The algorithm
terminates when one of the remainders becomes zero. This happens at the
latest when one reaches a square. This yields Euclid’s algorithm – an efficient
algorithm to compute the gcd of two numbers a and b.
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Example 6.1. Let us consider the case a = 17 and b = 10. First we reduce a
to the remainder R10(17) = 7, then b to the remainder R7(10) = 3 and so on
and so forth. We therefore obtain the sequence

(17, 10) → (7, 10) → (7, 3) → (1, 3) → (1, 0).

Thus, we obtain gcd(17, 10) = 1.

6.2.2 The extended Euclidean algorithm
Given two hour-glasses of different sizes, i.e., with different time intervals of
a = 17 and b = 10 minutes (a, b ∈ N), can one measure one minute?

a = 17 b = 10

As the gcd of 17 and 10 is 1, we can actually measure an interval of 1 minute:
We consider an iterative method to measure smaller time intervals with the
two hour glasses. We derive for each of the remainders in the Euclid algorithm
how to measure the corresponding time interval until we reach 1.

To measure an interval of 17 minutes, we use the first hour glass once and
the second not at all. Similarly, for 10 min, we use merely the second one.
To measure an interval of 7 minutes, we turn both hour glasses at the same
time. But the interval we are interested starts only after the sand in the second
hour glass has fallen through. Thus, we delay the start of the interval by 10
minutes.

Indicating delays in this way with minus signs, we obtain the following
number of uses of the hour glasses:

17 10
17 1 0
10 0 1
7 1 −1
3 −1 2
1 3 −5
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The first two lines can be filled easily. Each of the following lines can be
computed from the previous two. Take, for instance, the last line: From
integer division in the first column, we obtain the factor k := 7/3 = 2. We
obtain the last line (l5) from the previous two, (l4) and (l3) by computing
(l3) − k · (l4) = (l5). To measure an interval of one minute, we use the hour
glasses as follows.

3 · 17 = 51

5 · 10 = 50
51 − 50 = 1

This means
1 = 3 · 17 + (−5) · 10 ,

or in terms of modulo2

1 ≡ 3 · 17 (mod 10) .

Therefore, this yields an algorithm to compute inverses in modular arithmetic;
the method is called the extended Euclidean algorithm.

3 ≡ 17−1 (mod 10)

6.2.3 The Chinese remainder theorem
In order to count large groups if people, the ancient Chinese came up with
the following algorithm about 3000 years [sic!] ago: People had to form blocks
with rows of (relatively prime) number, such as 2, 3, 5, etc. For each prime
number, one would then record the remainder. As, for instance, shown in
Figure 6.5. From the first block we conclude that the number of soldiers x is
odd. From the second we obtain, that it is a multiple of 3. We can write this
as

x ≡ 1 (mod 2)
x ≡ 0 (mod 3)
x ≡ 2 (mod 5).

Then, the only solution to this equation smaller than 30 is 27. More precisely,
the triplet of equivalences given is equivalent to the single equivalence

x ≡ 27 (mod 30) .

2Recall that a ≡ b (mod m) is equivalent to Rm(a) = Rm(b) or m dividing the difference
(a − b), i.e., m|(a − b).
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remainder is 1

remainder is 0

remainder is 2

2 3 5

Figure 6.5: Counting in blocks.

We are in particular interested in the following special case. For two prime
numbers p and q it holds

x ≡ a (mod pq) ⇔

{
x ≡ a (mod p)
x ≡ a (mod q)

. (6.1)

6.2.4 Fermat’s little theorem
Finally, we revise Fermat’s theorem, treated at the beginning of the course.
Imagine we want to make a necklace with p pearls, each having one of a colors:

1

2

5
3

4

p
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How many different necklaces are there? A priori we can choose for each of
the pearls among a colors. So there are ap different necklaces. There are,
however, some that differ merely by a rotation. Thus, we have to divide by
the number of rotations. This would reduce the number of necklaces too much,
as we initially counted the a necklaces with all pearls having the same color
merely once. So we have to subtract those before the division and add them
afterwards again. Thus we obtain

#necklaces = ap − a

p
+ a ∈ N.

Therefore, p divides ap − a

p | ap − a ⇔ ap ≡ a (mod p) ⇔ ap−1 ≡ 1 (mod p) , (6.2)

where the last equivalence requires that p does not divide a, i.e., gcd(a, p) = 1.

6.2.5 Chinese Euclid
We can now combine the Chinese Remainder Theorem (6.1) and Fermat’s
theorem (6.2) to obtain for two primes p, q, with p �= q, and an integer number
a with gcd(a, pq) = 1

a(p−1)(q−1) ≡ 1 (mod p)
a(p−1)(q−1) ≡ 1 (mod q)

⇒ a(p−1)(q−1) ≡ 1 (mod pq)

Equipped with these tools, we introduce the RSA protocol.

6.2.6 The RSA protocol
Let Bob be the sender and Alice the receiver:

EncDec

A B

PK

SK PK

M M
C

The protocol consist of these steps:
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• Alice generates two large prime numbers p, q and computes n := p · q.
She then chooses a number e that is relatively prime to (p − 1)(q − 1),
i.e., gcd(e, (p − 1)(q − 1)) = 1. For instance e = 3, may be a possible
choice.

• Alice computes

d := e−1 (mod (q−1)(p−1)) ⇒ d·e ≡ 1 (mod (q−1)(p−1))

using the extended Euclidean algorithm.

• Alice now sends the public key PK = (n, e) to Bob while she keeps the
secret key SK = (n, d) secure with herself.

• Bob can now encrypt his message M ≤ n by computing C = Me em-
ploying the square and multiply algorithm. Then Bob sends C to Alice.

• Alice then decrypts the message as follows.

Cd ≡ (Me)d

≡ Me·d

≡ M1+k(p−1)(q−1) for some k ∈ N
≡ M1 ·

(
M (p−1)(q−1)︸ ︷︷ ︸

=1 mod n

)k

≡ M (mod n)

Security. RSA’s confidentiality is based on the hardness of factoring. To
compute p and q from n seems hard (it is not on a quantum computer — so
come to that course, any spring term!). An upper bound on the number of
computational steps is

√
n = 21/2 log n ,

i.e., exponential in the size of the input. The fastest algorithm publicly known
today is the so-called number field sieve and requires

2c(log n)1/3

computational steps. This is less than exponential but not polynomial in the
input size, thus called subexponential. It suffices to choose two large (e.g., 2048
bit) integers p, q to make RSA secure (assuming that the NSA does not have
secretly developed a substantially more efficient algorithm for factorizing or
possess a properly working quantum computer).
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(1) P and V find the cave (2) P chooses B (3) V chooses A

Figure 6.6: The cave zero-knowledge proof.

6.3 Zero-knowledge proofs
Secure communication is not the only goal of cryptography. In fact, cryptogra-
phy can be used to achieve a variety of seemingly impossible tasks. Consider,
for example, the problem of protecting sensitive data. The last few years have
seen a dramatic increase of database breaches, so much so that the word “data
breach” is now part of our daily lexicon. One idea to mitigate this risk is data
minimization, easily summarized as “only collect the data you really need.”
For example, in most countries, unsupervised social media use is allowed only
if the user is older than 13. As a consequence, service providers usually ask
for the user’s age during the sign in phase. This is unnecessary data: It would
be enough for the service provider to know that the user’s age is greater than
13, not its actual value. A solution is to use a zero-knowledge proof, a crypto-
graphic protocol that allows one party, called the prover, to convince a verifier
that she knows a solution to some problem (age ≥ 13), without revealing such
information (her age) to the verifier. The zero-knowledge property allows to
minimize the data that the service provider has to store: The verifier gains no
information from the protocol execution beyond the certainty that the prover’s
secret satisfies the verifier’s requirement.

6.3.1 The magic cave
A great example of a zero-knowledge proof is the following story, published at
an important conference in 1989 by Jean-Jacques Quisquater and others.

Two friends, Peggy and Victor, one day uncover a magic cave. The cave
has only one entrance and it is shaped as a ring, as shown in Figure 6.6 (1).
In the middle of the ring, opposite from the entrance, there is a magic door
that can only be opened by whispering a magic word. Peggy knows the word,
but does not want to reveal it to Victor. To convince him that she can open
the door without Victor learning the magic word, Peggy proposes a challenge:
If she can win it, Victor can be sure she knows the word. They label the left
and right path as side A and B, respectively. Then, Peggy enters the cave
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and chooses a side unbeknownst to Victor. Once she reaches the door, Victor
enters the cave (Figure 6.6 (2)) and asks Peggy to return from a side of his
choice. If Peggy knows the word, she can always return from the selected side,
independently from Peggy’s and Victor’s choices. At the same time, Victor
cannot learn the word, as he is too far away to hear it. However, if she lied,
she has only a 50% chance to satisfy Victor’s requirement; if they repeat the
experiment many times in a row, her success probability becomes close to zero.
Thus, if Peggy constantly reappears from the correct side, Victor can safely
conclude that she in fact knows the magic word.

6.3.2 Zero-knowledge proof of discrete logarithm

In cryptography, this can be used to prove knowledge of a particular value,
e.g., of a password x ∈ Z. Assume Victor is a email provider, and Peggy is
one of the users. When Peggy creates her account and generates her password
x ∈ Z, she also publishes an information S that will help her to later prove
that she knows x. The public S consists of three elements: a prime p > x, a
randomly chosen integer g < p, and the value y = Rp(gx) = gx (mod p). As
we already saw for the Diffie-Hellman key-exchange (cf. Section 6.1), extracting
x from y seems to be computationally hard, so Peggy’s password is safe even
if she publishes S = (p, g, y). Now, to prove to Victor that she knows the
password, Peggy and Victor run the following protocol: She selects a random
r in {0, 1, . . . , p−1}, and sends Victor the number t = Rp(gr). Upon receiving
t, he replies with a bit c chosen at random in {0, 1}. Depending on the value
that she receives, Peggy computes her answer z as follows:

• If c = 0, she sets z = r,

• If c = 1, she sets z = Rp−1(x + r) = x + r (mod (p − 1)).

When Victor receives z, he checks the value of c and,

• If c = 0, he checks that Rp(gz) = t.

• If c = 1, he checks that Rp(gz) = Rp(t · y).

The protocol is summarized in Figure 6.7.
First, let us check whether the protocol works when Peggy is honest. In

case c = 0, this is trivially true. When c = 1, it works thanks to Fermat’s Little
Theorem (cf. Section 6.2.4). To see why, let us write x + r as x + r = (x + r)
mod (p − 1) + (p − 1) · n, where n is the result of the integer division of x + r
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t

c

z

S = (p, g, y)

r ←$ {0, 1, . . . , p − 1}

t = Rp(gr)

c ←$ {0, 1}

If c = 0 set z = r

If c = 1 set z = Rp−1(r + x) If c = 0 check Rp(gz) ?=Rp(t)

If c = 1 check Rp(gz) ?=Rp(t · y)

Figure 6.7: Zero-knowledge proof for the login problem.

by p − 1. Then Fermat’s Little Theorem yields:

Rp(t · y) = gx+r (mod p)
= g(x+r) (mod (p−1)) · g(p−1)·n (mod p)
= g(x+r) (mod (p−1)) · 1 (mod p)
= gz (mod p) .

Thus, the protocol works. However, can Victor be sure that Peggy actually
knows x whether the checks are satisfied? It is clear that Peggy can always
send r, thus she can always win the case c = 0. However, she cannot send
Rp−1(r+x) unless she knows x. Analogously, if she chooses a random r′ as the
value of Rp−1(r+x) before the game, she still cannot compute t, as she cannot
extract r from r′ without knowing x. Therefore, Peggy can successfully cheat
only with 50% probability. As before, Victor can repeat the test multiple
times, to lower the cheating probability, and be sure that Peggy knows the
value x.

6.4 Cryptography and the quantum computer
In the last two centuries computers went from being huge mechanical machines
powered by steam (like those built by Charles Babbage in the 19th century)
to complex, small machines relying on microscopic technology powered by
electricity. With each technological advancement came faster algorithms, im-
plementations exploiting the larger computational power and storage of the
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new machines. From the point of view of cryptography, this is both a menace
and a blessing: Faster computers allow for faster attacks to existing cryptosys-
tems, but also for practical implementation of more complex protocols. Thus,
part of cryptographic research focuses on designing cryptography tailored to
the threads and possibilities that future computers will yield.

Quantum computers are one of the possibilities for future computers ar-
chitecture. Such machines run exploiting phenomena from quantum physics
and thus approach computing in a completely new way. While they might
not be faster than classical computer on average, they definitely outperform
current supercomputers on some specific tasks. As it was hinted already when
we talked about RSA, factoring large numbers is one of them. Peter Shor pub-
lished a fast quantum algorithm for factoring in polynomial-time already in the
1990s, and since then cryptographers have been concerned with finding cryp-
tographic schemes that cannot be broken even using a quantum computers.
This part of cryptography is called post-quantum cryptography.

But what is exactly the difference between classical and post-quantum
cryptography? In a nutshell, post-quantum cryptography includes all protocols
that still run on classical computers whose security relies on mathematical
problems that would take centuries to solve using either classical or quantum
computers (or both!). At the same time, quantum computers can be used to
run cryptographic protocols, too! These protocols are grouped under the label
of quantum cryptography.

To summarize, one can classify cryptographic protocols in three main cat-
egories depending on how they perform in a quantum world:

Classical Cryptography includes protocols that run on classical computers
and are secure when attacked using classical computers, but can be bro-
ken using quantum computers. RSA and Diffie-Hellman key-exchange
are unfortunately in this category, alongside all protocols whose security
relies on the hardness of factoring over elliptic curves (sounds weird, but
one can actually do algebraic computations on the points of a curve!).

Post-Quantum Cryptography includes protocols that run on classical com-
puters and are secure when attacked using both classical and quantum
computers. Symmetric key primitives are in this category, alongside
code-based protocols, and others.

Quantum Cryptography includes protocols that run on quantum comput-
ers and are secure when attacked using classical and quantum computers.
In fact, as they rely on peculiarity of quantum computers that cannot
be simulated using classical computers, there is no need to worry about
classical attacks.

Bear in mind that this is not a comprehensive classification: If a new type
of computer appears in the future, this list has to be revised.
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