
240

Mastering the 
“Sequential Roof”
Computational Methods for Integrating Design, 
Structural Analysis, and Robotic Fabrication

Aleksandra Anna Apolinarska, Ralph Bärtschi, Reto Furrer, Fabio Gramazio,  
and Matthias Kohler

A. A. Apolinarska, F. Gramazio, M. Kohler 
Gramazio Kohler Research, ETH Zurich, Switzerland

apolinarska@arch.ethz.ch 
gramazio@arch.ethz.ch 
kohler@arch.ethz.ch

R. Baertschi 
ROB Technologies AG, Switzerland

baertschi@rob-technologies.com

R. Furrer 
Dr. Lüchinger+Meyer Bauingenieure AG, Switzerland

rfu@luechingermeyer.ch

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



241

Abstract
This paper gives insight into a cross-disciplinary computational workflow de-
veloped and implemented in the recently completed “Sequential Roof” project 
at ETH Zurich. The project is a 2308 m2 freeform, load-bearing timber structure 
consisting of nearly 50,000 members, robotically assembled layer-by-layer into 
trusses. The design and analysis of the highly differentiated structure required 
bespoke computational methods combined into an iterative process to solve the 
complex interrelations between geometry, structural behaviour, and fabrication 
constraints. Here, we describe this process, starting with (1) the geometric defi-
nition of the roof and (2) its structural model representation and evaluation with 
respect to the used connection method. Further we elaborate on (3) a randomised 
vertex population algorithm for the nail connection, and (4) the greedy algorithm 
to determine the necessary modifications. Ultimately, we explain how this com-
putational workflow was implemented in the construction design phase of the 
project and discuss transferability of the approach and the architectural outcome. 
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1.	 Introduction
1.1	 Project Description and Context 
The “Sequential Roof” was developed by the group Gramazio Kohler Research 
at ETH Zurich for the new “Arch_Tec_Lab” building of the Institute of Technology 
in Architecture (ITA) at the ETH Hoenggerberg Campus. The building itself was 
planned and realised as a multidisciplinary research project (ITA 2016). The con-
cept behind the roof’s design was to investigate possibilities and constraints of 
computational design and robotic assembly on a full architectural scale (Willmann 

et al. 2015). Following previous, smallerscale experiments of the group, the design 
concept focussed on using ordinary, low-engineered softwood elements with a 
simple, linear geometry and notch-free joints, to create complex, versatile, and 
highly articulated structures (Gramazio, Kohler & Willmann 2014). 

The roof structure, covering an area of 2,308 m2, consists of 168 individual 
trusses, spanning maximum 14.70 m between steel box beams of the prima-
ry structure (Fig. 1) (Adam 2014). Each timber truss is composed of average of 370 
geometrically unique timber slats, stacked in a layerwise alternating way and 
joined together by nails connecting each two overlapping slat ends. Using a ro-
botic setup, the elements are fabricated and assembled sequentially in a fully 
automated process, where each slat is cut to size and then directly placed and 
joined with the rest of the truss structure (Fig. 19) (Apolinarska et al. 2015). Using simple 
elements that require minimal and fast processing (simple cuts) and focussing 
on full automation in assembly are key features that distinguish the project from 
other recently realised nonstandard timber structures, which make intense use 
of multiaxis CNC woodworking techniques to produce complex, curved elements 
with intricate connections and which are then assembled manually. 

1.2	 Computational Workflow 
Such fabricationdriven design addressing a novel construction method radically 
challenges the conventional, phase-based process where the level of detail in-
creases with each planning stage. Here, it was mandatory that design, analysis, 
and execution planning are tightly integrated and developed concurrently be-
cause of the obscure and complex dependencies between geometry, structural 
behaviour, and fabrication details. In consequence, it was not possible to gen-
erate a valid (structurally sound, feasible to fabricate, and architecturally correct) 
solution explicitly from a given set of input parameters. 

With a “heavy” digital model, large data sets, long calculation times, and 
tight schedule to produce a final model ready to fabricate, our strategy was to 
start with a simple and mostly underdimensioned model, and to iterate through 
the loop of analyses and local modifications until all problems were resolved. The 
key challenge was therefore to establish an integrated workflow to facilitate this 
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Figure 1. Isometric overview of the roof. It is composed of 168 timber trusses supported by a primary steel structure.
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Figure 2. A pair of timber trusses with subsystems (sprinkler system, smoke exhaust, electrical, lighting, skylights). 
Insulation and weatherproofing layers are applied directly onto the structure, without additional boarding. Each truss rests 
on steel box beams, with one fixed bearing and the other movable in the longitudinal direction.
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Figure 3. Schematic of the established computational workflow.
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process. In short, each iteration consisted of four steps: First, generate the model 
given the current parameters (see Section 2). Then, perform structural calculations 
and evaluation (see Section 3). Next, generate nail pattern for each connection, 
observing structural and fabrication constraints (see Section 4). Finally, assess 
the results of both simulations and perform modifications (see Section 5). Apart 
from several bespoke algorithmic methods, the workflow involved data manage-
ment and data exchange, error-proofing and evaluation methods.

2.	Geometric Design
2.1	 Geometry Setout 
The overall undulating form of the roof is defined layerwise by pairs of cubic Bézier 
curves. The curves are discretised by setout points P (Fig. 4), which are then used 
as direct and fix reference for the truss geometry. Their position is derived from 
a possibly uniform triangulation of the truss and locally compromised by inter- 
faces with building components such as skylights, exhaust shafts, sprinkler pipes, 
or primary structure (Fig. 2). With setout points referring to the outer boundary of 
the roof shape, the position of a slat’s axis line L depends on its width w (Fig. 5). 
The given setout points and widths create a geometric stencil for elements in a 
layer. Due to the free-form overall shape of the roof, in each layer the stencil is 
different, and there is a slight shift between slats in neighbouring layers.

2.2	 Layering
While the stencil is needed to determine geometry of the elements (axes, node 
points, end cuts of each slat) in each layer, the layering pattern defines which el-
ements actually occur in the truss – it defines the composition of chord and di-
agonal slats through all 23 layer of a truss. For example, structural logic imposes 
continuity of the top and bottom chord, which could here be achieved by concat-
enating the individual elements into a symmetrically layered belts (Fig. 6) (Apolinarska 

et al. 2015). The resulting pattern consists of a repeated sequence of three layers of 
chord slats followed by a layer of diagonal slats. Local exceptions to this pattern 
occur when some slats need to be removed, for example, below the skylights 
(to let more light in) or to let smoke exhaust shafts through the roof structure 
(Fig. 2). In general, the geometric setup is relatively flexible, and its principles could 
easily be adapted to use in other projects.
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Figure 5. Detail of the geometric stencil. With setout points P fixed, the position of the slat's axis L depends on its width w.

Figure 6. Layering pattern. (Apolinarska et al. 2015).
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Figure 4. Setout geometry for a layer: a pair of Bézier curves, setout points P and stencil geometry.
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3.	Structural Analysis
3.1	 Structural System
Through the layered buildup, the structural system of the timber trusses differs 
slightly from that of a typical truss, where the axes of diagonal and chord members 
usually intersect at nodal points. This is not the case here (Fig. 7), and the resulting 
eccentricity causes considerable shear forces and bending moments. Additionally, 
the load flow in cross direction (which is also wood’s weak direction) is diverted, be-
cause the axes of connecting member do not intersect as they lie in different layers. 
Thus, the connections are modelled as connector-beams. Further, connector-beams 
have to be geometrically decomposed into segments so that the connector is nor-
mal to the shear plane (Fig. 8) to get the right section forces. Together, all these phe-
nomena were challenging to represent and interpret with a beam statics program. 

3.2	 Analysis
The structural analysis process consisted of three steps: model setup, calculation, 
and post-processing. The model setup included acquiring the geometry (node 
points and members) into a structural analysis software and defining loads, load 
cases, supports, cross-sections, etc. From the calculation results, the internal 
forces were post-processed to produce twofold output information. The first out-
put information was derived from beam proofs based on buckling, bending, nor-
mal and shear forces, and indicated which slat had to be wider to satisfy these. 
The second output information was the required number of nails per connector 
as a result of the internal forces in the connector beams.

3.3	 Connection
The specific structural and fabrication logic of the structure required a connection 
method that would be both geometrically flexible and fully automatable. Further, 
because the static system of the coupled trusses is statically highly indeterminate, 
ductile connections were necessary to transfer loads – a brittle failure of con-
nections could lead to a progressive collapse of a truss. Therefore, a connection 
technique using 90 mm long grooved nails, with a shaft diameter of d = 3.4 mm, 
proved to be both the simplest and the most applicable solution for this project. 
Automated nailing is a fast, cost-effective, and well-established CNC technology 
in timber construction. Compared to bolts, screws, or bulldog connections, re-
sistance of one nail is quite smal; however, due to their relatively small diame-
ter nails can be placed closer together and fit better in the connection’s overlap 
area. In result, the sum of the nails can create enough resistance, more than 
the alternatives. The downside of this connection technique is the exceptional 
complexity that arises from combining multiple layers with different geometries. 
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Figure 9. (left) Minimal distances for nailed connections 
according to the Swiss timber code (SIA 265:2003 Timber 
Structures 2003). For this project, both slats are considered 
loaded, so the edge offset are 6d (cross to fibre) and 15d 
(along fibre). Distances between nails are 5d and 10d 
respectively.
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Figure 7. Point-and-line model generated for Rstab input. Figure 8. Detail of point-and-line model. The number of 
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Through the eccentric connection, chord slats are 
represented by three (in general not colinear) members.
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Figure 10. Interpretation of the spacing rules as elliptic lockout areas and comparison with a rhombic grid layout. 
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The Swiss timber code (SIA 265:2003 Timber Structures 2003) specifies 
rules for nailed connections, including minimum distances to slats’ edges and 
between nails, depending on the fibre direction and the nail’s shaft diameter d, 
as represented by a rhombic grid in Fig. 9. This distribution, however, is inefficient 
if multiple slats are overlapping with different angles between them. Instead, 
the distances were interpreted as a pair of elliptic lock-out areas around each 
nail, with long axes of the ellipses aligned with fibre directions of the two corre-
sponding slats (Fig. 10). The edge offsets, resulting in a polygonal feasibility region, 
were calculated individually for each pair of connecting slats.

Still, the nails in each connection had to observe nails from the layer above 
and below. With a total of 129,840 connector-beams, each with individual geo-
metric conditions, distribution of all the required nails in a reasonable, efficient, 
and compliant way could only be solved with computational methods. The next 
section describes the algorithm developed for this purpose. 

3.4	 Testing
The various assumptions mentioned above needed to be refined and confirmed 
by physical tests. First, small specimens consisting of three slats were tested to 
determine shear and bending stiffness parameters for connectorbeam elements 
in the calculation model. Also, connections with asymmetrically distributed nails 
were tested to determine the impact of symmetry on the performance of the 
connection – strongly asymmetric distribution of nails increases the risk of splitting 
of wood fibres due to onesided lateral tension forces. Finally, 15 full-scale trusses 
were load tested to get further assurance in regard to statics, and production 
processes. With the use of statistics the failure mode and the corresponding 
load could be predicted quite precisely. 

4.	Nail Placing Algorithm 
4.1	 Problem Description
Given the geometry of connecting slats, the challenge for the nail-placing al-
gorithm is to find a solution to how to distribute the required number of nails 
in the connections in a way that is compliant with the spacing rules described 
in the previous section. Moreover, the nails should be distributed evenly 
(symmetrically). Also, a fabrication requirement is that each slat has at least 
one fix-nail at each end – a nail that lies exactly on the slat’s axis line. As the 
trusses are assembled by a robot, the first nail has to be placed when the 
gripper holding the slat is still closed in order to fix the slat in place precise-
ly. The fact that the gripper is still holding the slat in that moment constraints 
the fixnail’s position (Fig. 20).
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to get a robust polygon clipping behaviour, we decided to use a 2D polygon clipping library based on 
Vatti’s algorithm (Vatti 1992; Murta 1997). For this, the lock-out zone ellipses are represented by a 
polygon with 72 vertices. The resolution of the ellipses, and of the resulting shape of the feasibility 
region, is an important parameter in the subsequent algorithm (Fig. 12). 

The nail-placing procedure starts by finding a feasible fix-nail configuration for all layers. After that, the 
remaining nails are distributed. For each layer-node there are two feasibility regions, so first we choose 
whether the new nail should be placed in the upper or lower one. If both feasibility regions are nonempty, 

let 𝛥𝛥	: = 𝑛𝑛& − 𝑛𝑛( (where 𝑛𝑛& = number of nails required, 𝑛𝑛( = number of nails placed). If both connectors 

do not yet have enough nails (i.e. 𝛥𝛥) > 0	 ∧ 	𝛥𝛥- > 0), then the lower of the ratios 𝐴𝐴/𝛥𝛥 (where 𝐴𝐴 = area 
of the feasibility region) wins; otherwise, the higher of		(𝛥𝛥), 	𝛥𝛥-) wins. Next, we randomly choose from 
vertices on the border of the selected feasibility region, restarting the algorithm a few times with different 
seeds. Using randomness helps to avoid bias and thus proved to improve the overall behaviour of the 
algorithm. Next, we evaluate the randomly selected candidates in terms of symmetry and discard 
solutions below the acceptable threshold. The symmetry of a nail pattern with respect to a slat is defined 
as the average of signed distances of the nails to the axis line. From the remaining candidate points, we 
pick the best solution to place a nail. Alternatively, one could restrict the choice of the random vertex to 
the convex hull of the feasibility region. This would automatically solve the dependence on the 
resolution. 

The nail-placing algorithm iterates as long as the feasibility regions are nonempty. It may not be able to 
place all the required nails, or it may fail to place a fix nail, or it may be able to place more nails than 
needed. This can cause problems: Redundant nails placed when solving for diagonal slats can impair 
the completion of the vertex population algorithms in the chord slats. To avoid this, if no solution was 
found after two trials, redundant diagonal nails which intersect the considered feasibility region are 
deleted. A surplus of more than 50% of required nails is also economically undesirable. The superfluous 
nails above the +50% threshold are therefore deleted. The selection is done carefully to maximize the 
symmetry in distribution around slat’s axis.  

 

 
Def VertexPacker(AlreadyPlacedNails, GeometricalSituation, RequiredNails): 
     Generate the initial feasibility areas 
    Loop as long as there is some nonempty feasibility area: 
        Choose either upper or lower connector 
 Pick m random vertices on the border of the feasibility area 
        Discard vertices harming symmetry 
        Pick best vertex 
        Place a nail 
        Recalculate both feasibility areas affected by this nail 
 
counter = 0 
solutions = [] 
 
While counter < 15: 
    counter += 1  
 
    If counter==3 and not solutions: 
        DeleteRedundantNailsOnDifferentLayers(AlreadyPlacedNails) 
  
    packing = VertexPacker(AlreadyPlacedNails, GeometricalSituation, RequiredNails) 
  
    If enough_nails: 
        result = [#redundant_nails_upper + #redundant_nail_lower, symmetry, packing] 
  solutions.append(result) 
 

Figure 12. Nail placing algorithms pseudocode.
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4.2 Splitting the Problem into Sub-problems

Each node, understood as the sequence of connections of 23 layers of slats, re-
fers to 22 pairs (“a” and “b”) of connectors. The nail-placing problem is indepen-
dent for each node. The problem of placing nails in the entire node can be split into 
a set of layer-node nail problems (Fig. 11). By layer-node we denote an abstraction 
that describes all nails going through a certain slat in the node, i.e. those placed 
in this slat (lower connector) and those from the slat above (upper connector).

There are two types of connections: between a chord slat and a diagonal, and 
between two chord slats. The nails inside diagonal slats (in diagonal layer-nodes) 
are placed first (layers 3-4, 7-8, 11-12, 15-16, and 19-20). The remaining nails are 
placed by solving for the chord slat in the middle of the belt (chord layer-nodes in 
layers 1-2, 5-6, 9-10, 13-14, 17-18, and 21-22) – this task is partially constrained 
by the already placed nails from the diagonal layer-nodes. 

4.3	 Random Vertex Population
Our first studies to solve the nail spacing problem were based on physical sys-
tems, for example, floating circles (Hockney & Eastwood 1981). However, it soon became 
apparent that the problem is too stacked to get a good floating behaviour. Also, 
the nail spacing task is not an optimisation problem, but one aiming at finding 
a feasible solution.

Therefore, an alternative approach was pursued: Nails are added to the 
solution one by one, placed on the border of the feasibility region. At the begin-
ning, the feasibility region is constructed by edge offsets of the overlapping slats. 
When a nail is placed, and a corresponding nonconstant offset of its lockout zone 
is subtracted (Fig. 13). This means that the resulting new feasibility region may as 
well be disjoint. Experience shows that Boolean clipping in 3D CADsoftware 
lacks robustness (Schirra 2000). In order to get a robust polygon clipping behaviour, 
we decided to use a 2D polygon clipping library based on Vatti’s algorithm (Vatti 

1992; Murta 1997). For this, the lock-out zone ellipses are represented by a polygon 
with 72 vertices. The resolution of the ellipses, and of the resulting shape of the 
feasibility region, is an important parameter in the subsequent algorithm (Fig. 12).

The nail-placing procedure starts by finding a feasible fixnail configuration 
for all layers. After that, the remaining nails are distributed. For each layernode 
there are two feasibility regions, so first we choose whether the new nail should 
be placed in the upper or lower one. If both feasibility regions are non-empty, let 
∆: = nR – nP (where nR = number of nails required, nP = number of nails placed). 
If both connectors do not yet have enough nails (i.e. ∆u > 0 ∧ ∆l > 0), then the 
lower of the ratios A / ∆ (where A = area of the feasibility region) wins; other-
wise, the higher of (∆u > , ∆l ) wins. Next, we randomly choose from vertices on 
the border of the selected feasibility region, restarting the algorithm a few times 
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Figure 13. A step-by-step example of solving a diagonal layernode. Top left: Initial situation. Shaded areas denote the 
initial feasibility regions created by edge offsets. Top right: Fixnails placed at axis lines. New remaining feasibility regions 
after subtracting the offsets of lock-out areas, including those from nails from other layers not shown here. Bottom left: 
Situation after 10th iteration. Lockout areas of the same colour cannot intersect. In the lockout areas of different colours, 
only the ellipses in the layer they share cannot intersect, which is here the layer of the diagonal slats (ellipses aligned 
with axes of diagonals). Bottom right: Situation near completion. On the right there is still a non-empty feasibility region 
where two more nails could be placed. 

Figure 14. Final distribution of nails in a diagonal layer-node from the example in Figure 13 (isometric view from top).
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with different seeds. Using randomness helps to avoid bias and thus proved to 
improve the overall behaviour of the algorithm. Next, we evaluate the randomly 
selected candidates in terms of symmetry and discard solutions below the ac-
ceptable threshold. The symmetry of a nail pattern with respect to a slat is defined 
as the average of signed distances of the nails to the axis line. From the remain-
ing candidate points, we pick the best solution to place a nail. Alternatively, one 
could restrict the choice of the random vertex to the convex hull of the feasibility 
region. This would automatically solve the dependence on the resolution.

The nail-placing algorithm iterates as long as the feasibility regions are non-
empty. It may not be able to place all the required nails, or it may fail to place a 
fix-nail, or it may be able to place more nails than needed. This can cause prob-
lems: Redundant nails placed when solving for diagonal slats can impair the com-
pletion of the vertex population algorithms in the chord slats. To avoid this, if no 
solution was found after two trials, redundant diagonal nails which intersect the 
considered feasibility region are deleted. A surplus of more than 50% of required 
nails is also economically undesirable. The superfluous nails above the +50% 
threshold are therefore deleted. The selection is done carefully to maximise the 
symmetry in distribution around slat’s axis. 

5.	Modification Strategies
5.1	 Challenge
Both structural analysis and nail-placing procedure can yield negative results, 
meaning that the model needs some modification. Since the problems proved 
to be highly differentiated, no generalised solutions could be found. Also, as the 
overall form of the structure and the setout points were overconstrained, possi-
ble spectrum of modifications was confined to dimensioning (incrementing the 
slat’s width) and geometric details (extending the slat’s end cut) (Fig. 15). The choice 
of slat sizes was limited to three: 115 x 50 mm, 140 x 50 mm and 180 x 50 mm, 
which is a compromise between the necessary differentiation and economy of 
the fabrication process. 

The problems of the first type – the failed beam proofs (as described in 
Section 3) – are explicit and non-negotiable. They are treated in the first place by 
changing the indicated slats’ sizes as required by structural analysis. The second 
type of problems concerns the connection: Either some of the required nails 
or a fixnail could not be placed. In general, the solution is to change (usually in-
crease) the feasibility area of the connection. These problems are far less trivial 
to solve. One of the reasons is that the problem does not explicitly indicate which 
element to modify – each connection is shared by two elements and in most 
cases changing only one of them is sufficient. Also, increasing the size of a slat 
to solve a problem at one end changes the situation in all of its connections at 
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the other end too. Moreover, the effect of the modification cannot be evaluated 
exactly; this would require repeating the structural and fabrication analysis for 
each considered choice – technically possible, but inefficient. The actual number 
of nails that fit into the initial feasibility region cannot be directly deduced from 
its area (because it depends on the situation in other layers) – an estimate must 
suffice instead. In some cases, the modification does not increase the overlap 
area at all (Fig. 15). Again, modifying the size of a slat changes its axis and moves 
the structural node points. 

5.2	 Method
The solving procedure can be applied to each truss individually, which consid-
erably reduces the complexity and speeds up the process. For each truss, first 
we try to solve all fixnail problems. Fortunately, they are rare, and their cause is 
easy to identify and eliminate. Next, we try to solve the “missing nail” problems, 
starting with the most economical method: extending the slat’s end. For each 
connector there is only one possible slat to extend, and the problematic connectors 
are treated in the order according to the number of missing nails. 

For each modification, the new feasibility region is calculated to check if its 
area really increased. For any applied modification, areas of all affected (shared 
by the slat) feasibility regions must be recalculated to estimate the number of 
nails that they could additionally accommodate and to add this amount to each 
connector’s number of nails already placed (nP + nA). 

The remaining “missing nail” problems are solved by enlarging the slat’s 
width. Here, to establish a solving order, we chose a “greedy algorithm” mech-
anism in which the “worst” elements are treated first. The “worst” slat is deter-
mined with a heuristic approach by combining various parameters to sort all slats 
according to four criteria in the following sequence: difficulty (S1), then the sum 
of all nails required (nR) in all connectors (c) attached to a slat (𝑛𝑛&) in all connectors (𝑐𝑐) attached to a slat (𝑆𝑆8 = 	− 𝑛𝑛9&

:
9;6 ), followed by slat’s current size ( , 

and finally nails overload (𝑆𝑆>), which is a ratio of the sum of missing nails (𝑛𝑛 ) to the required nails 
(𝑛𝑛&): 𝑆𝑆> = 	 𝑛𝑛9?	/ 𝑛𝑛9&

:
9;6

:
9;6 . Difficulty (𝑆𝑆6) is a sum of three values: sum of all nails missing in all its 

connectors ( 𝑛𝑛9?
:
9;6 ), nails missing (𝑛𝑛@?) in slat’s worst connector (connector with the highest number 

of nails required, and nails missing (𝑛𝑛A?) in slat’s worst node (node with highest number of nails required 
in its 

 , 

extend end

larger
feasibility 
area

increase 
width no effect

increase 
width

Figure 15. Two possibilities of modifying the overlap zone geometry: by extension and by increasing the size of a timber 
element. Extensions are preferred for the sake of material economy, but cannot be applied to diagonal members (as it 
would increase the eccentricity) and were not allowed in lower chord (for visual reasons) and certain further exceptions. 
Increasing size in chord-chord connections may be ineffective. (Apolinarska et al. 2015).
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followed by slat’s current size (S3=w), and finally nails overload (S4), which is a ratio 
of the sum of missing nails (nM) to the required nails 

(𝑛𝑛&) in all connectors (𝑐𝑐) attached to a slat ( , 
and finally nails overload (𝑆𝑆>), which is a ratio of the sum of missing nails ( ) to the required nails 
(𝑛𝑛&): 𝑆𝑆> = 	 𝑛𝑛9?	/ 𝑛𝑛9&

:
9;6

:
9;6 . Difficulty (

connectors ( 𝑛𝑛9?
:
9;6 ), nails missing (𝑛𝑛@?  with the highest number 

of nails required, and nails missing (𝑛𝑛A?) in slat’s worst node (node with highest number of nails required 
in its connectors): 𝑆𝑆6 = 𝑛𝑛9?

:
9;6 + 	𝑛𝑛@? . If the worst slat cannot be modified (because it has 

already maximal size) or the modification is not effective, try other slats connected to its worse end. 
After each modification, we sort the list of elements again and remove all “resolved” ones. The process 
iterates until the list is empty. 

 

 . 
Difficulty (S1) is a sum of three values: sum of all nails missing in all its connectors 

(𝑛𝑛&) in all connectors (𝑐𝑐) attached to a slat (𝑆𝑆8 = 	− 𝑛𝑛9&
:
9;6 ), followed by slat’s current size (𝑆𝑆< = 𝑤𝑤), 

and finally nails overload (𝑆𝑆>), which is a ratio of the sum of missing nails (𝑛𝑛?) to the required nails 
(𝑛𝑛&): 𝑆𝑆> = 	 𝑛𝑛9?	/ 𝑛𝑛9&

:
9;6

:
9;6 . Difficulty (𝑆𝑆6) is a sum of three values: sum of all nails missing in all its 

connectors ( 𝑛𝑛9?
:
9;6 ), nails missing (𝑛𝑛@?) in slat’s worst connector (connector with the highest number 

of nails required, and nails missing (𝑛𝑛A?) in slat’s worst node (node with highest number of nails required 
in its connectors): 𝑆𝑆6 = 𝑛𝑛9?

:
9;6 + 	𝑛𝑛@? + 	𝑛𝑛A?. If the worst slat cannot be modified (because it has 

already maximal size) or the modification is not effective, try other slats connected to its worse end. 
After each modification, we sort the list of elements again and remove all “resolved” ones. The process 
iterates until the list is empty. 

 

 , nails missing (nkM) in slat’s worst connector (connector with the highest 
number of nails required, and nails missing (nqM) in slat’s worst node (node with 
highest number of nails required in its connectors): 

(𝑛𝑛&) in all connectors (𝑐𝑐) attached to a slat (𝑆𝑆8 = 	− 𝑛𝑛9&
:
9;6 ), followed by slat’s current size ( , 

and finally nails overload (𝑆𝑆>), which is a ratio of the sum of missing nails ( ) to the required nails 
(𝑛𝑛&): 𝑆𝑆> = 	 𝑛𝑛9?	/ 𝑛𝑛9&

:
9;6

:
9;6 . Difficulty (𝑆𝑆6) is a sum of three values: sum of all nails missing in all its 

connectors ( 𝑛𝑛9?
:
9;6 ), nails missing (𝑛𝑛@?) in slat’s worst connector  with the highest number 

of nails required, and nails missing (𝑛𝑛A?) in slat’s worst node (node with highest number of nails required 
in its connectors): 𝑆𝑆6 = 𝑛𝑛9?

:
9;6 + 	𝑛𝑛@? + 	𝑛𝑛A?. If the worst slat cannot be modified (because it has 

already maximal size) or the modification is not effective, try other slats connected to its worse end. 
After each modification, we sort the list of elements again and remove all “resolved” ones. The process 
iterates until the list is empty. 

 

 . If 
the worst slat cannot be modified (because it has already maximal size) or the 
modification is not effective, try other slats connected to its worse end. After 
each modification, we sort the list of elements again and remove all “resolved” 
ones. The process iterates until the list is empty.

5.3	 Results
Although each truss was processed individually (see example in Fig. 16) and problems 
were considered on a local level, the algorithm yielded consistent solutions 
throughout all trusses, producing similar patterns in similar trusses (Fig. 18), thus 
proving to be sufficiently robust to minor differences in input parameters, such 
as rounding errors. In terms of efficiency, the number of problems reduced by 
over 95% between iterations (Fig. 17). Most of the trusses were cleared after 
already three to four iterations, though, some required as much as seven iter-
ations. With one full iteration costing almost 24 hours of work and calculation 
time, solving the model with as few iterations as possible was favourable. At 
the same time it is difficult to conjecture whether a method converging more 
slowly would yield a solution that is more efficient in terms of material con-
sumption, because with the given slat sizes the size increment is often larger 
than needed, especially for minor problems. In the final model, the wood vol-
ume increased by +13% to 385 m³ compared with 339 m³ of the initial model. 
Nevertheless, if the roof had to be realised with one size only and dimensioned 
to the worst case, the increase would have been an estimated +59% (539 m³). 
It is worth pointing out that, as it is often the case in timber structures, also 
here the connections were the driving factor in dimensioning of the slats. In 
total, 815,984 nails were placed, with an overhead of +45.73% making use of 
the surplus area to increase the stiffness of the connections and improve the 
transferring loads. 

6.	Implementation
The entire roof model consisted of 49,858 slat elements (represented by extru-
sions, axis lines, outlines) generated based on 3,808 pairs of input curves. The 
structural representation involved 135,840 node points, 91,286 members, and 
129,840 connector-beams. Handling such a “heavy” and differentiated model 
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Figure 16. Solving steps for an exemplary truss: an initial 
model, after first and after last iteration (Apolinarska et al. 
2015). Corresponding resulting wood volume with respect 
to the three slat sizes: 115–50 mm (light blue), 140–50 mm 
(blue), 180–50 mm (dark blue).

Figure 17. Solving steps for an exemplary truss. Number 
of nails missing (black), placed (grey) and maximal possible 
surplus (light grey) at different iterations.

Figure 18. Final, resolved model of the entire roof structure, colour-coded according to the slat's width (see legend 
Fig. 16) (Apolinarska et al. 2015).
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required a high degree of automation in modelling and an efficient and intuitive 
data management strategy for query, survey, and control. 

The architectural geometric model was generated using custom-made  
libraries based on RhinoCommon SDK of the 3D Modelling software McNeel  
Rhinoceros©. For the structural analysis in the software Dlubal Rstab©, the model 
was assembled with bespoke scripts using API modules that directly access the 
application (RS-COM) to overcome the hurdle of manually setting the extremely 
high amount of individual properties for each element. The post-processing of 
the calculation results was carried out in Excel with help of VBA macros. 

The computational workflow relied heavily on intense exchange of large 
amounts of data, and the output format of the processed data at different steps 
of the workflow could be tailored accordingly, be it a 3D model or a data-set in text 
or spreadsheet format. Conventional representation methods such as 2D plans, 
elevations, and sections were mostly unfit to portray the relevant information. 

Needless to say, error-proofing demanded special consideration, and cross-
checking procedures had to be established. For example, the development of the 
highly complex nail pattern algorithm required an independent control script to 
examine the reported nail pattern results with the geometric solution, by redraw-
ing the fibre-aligned ellipses and checking if they are collision-free. Additionally, 
at all stages the geometry and calculations were inspected at random, including 
visual control, and checked for consistency. 

As mentioned earlier, the final, completely resolved model provided not only 
all calculations and detailing, but also output data for fabrication (Fig. 3). This feature 
is a radical difference to the conventional execution planning process and a major 
step forward to a complete, gapless digital chain. These output data were then 
converted into machine code of the large scale 6-axis gantry robot with which 
the roof trusses were built (Kramer 2016) (Fig. 19). 

7.	 Conclusions
The project exemplifies the specific modus operandi needed for fabrication-driven 
design, which requires a concurrent collaboration between disciplines that are 
usually involved at different project stages (design, detailing, structural analysis, 
fabrication, and execution planning). It also highlights the importance of team-
work as soon as challenges and risks faced by planners and stakeholders go be-
yond the standard code of practice. 

Overall, although many of the developed methods are very case specific, 
the core ideas of the project, i.e. the computational workflow, should be easily 
transferable to future projects. Still, the established computational framework 
holds a lot of potential for further development, for example by tighter integra-
tion of programming interfaces to simplify data exchange. 
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Figure 21. Interior view of the completed roof. Figure 22. Detail soffit view of the completed roof. The 
varying width of the diagonal slats manifests itself in the 
connections. The shadow gaps between the timber trusses 
allow for building tolerances and shrinking and swelling 
of wood.

Figure 19. Automated fabrication and assembly using a 
6-axis gantry robot (ERNE AG Holzbau) (Willmann et al. 
2015).

Figure 20. Fixing a slat with a fix-nail. After all slats in 
the layer have been placed and fixed, all remaining nails 
are shot.
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