
240

Mastering the
“Sequential Roof”
Computational Methods for Integrating Design,
Structural Analysis, and Robotic Fabrication

Aleksandra Anna Apolinarska, Ralph Bärtschi, Reto Furrer, Fabio Gramazio,
and Matthias Kohler

A. A. Apolinarska, F. Gramazio, M. Kohler
Gramazio Kohler Research, ETH Zurich, Switzerland

apolinarska@arch.ethz.ch 
gramazio@arch.ethz.ch
kohler@arch.ethz.ch

R. Baertschi
ROB Technologies AG, Switzerland

baertschi@rob-technologies.com

R. Furrer
Dr. Lüchinger+Meyer Bauingenieure AG, Switzerland

rfu@luechingermeyer.ch

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

241

Abstract
This paper gives insight into a cross-disciplinary computational workflow de-
veloped and implemented in the recently completed “Sequential Roof” project
at ETH Zurich. The project is a 2308 m2 freeform, load-bearing timber structure
consisting of nearly 50,000 members, robotically assembled layer-by-layer into
trusses. The design and analysis of the highly differentiated structure required
bespoke computational methods combined into an iterative process to solve the
complex interrelations between geometry, structural behaviour, and fabrication
constraints. Here, we describe this process, starting with (1) the geometric defi-
nition of the roof and (2) its structural model representation and evaluation with
respect to the used connection method. Further we elaborate on (3) a randomised
vertex population algorithm for the nail connection, and (4) the greedy algorithm
to determine the necessary modifications. Ultimately, we explain how this com-
putational workflow was implemented in the construction design phase of the
project and discuss transferability of the approach and the architectural outcome.

Keywords:
computational design, computational geometry, robotic fabrication,
robotic assembly, timber construction, structural design, timber structures

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

242

1.	 Introduction
1.1	 Project Description and Context
The “Sequential Roof” was developed by the group Gramazio Kohler Research
at ETH Zurich for the new “Arch_Tec_Lab” building of the Institute of Technology
in Architecture (ITA) at the ETH Hoenggerberg Campus. The building itself was
planned and realised as a multidisciplinary research project (ITA 2016). The con-
cept behind the roof’s design was to investigate possibilities and constraints of
computational design and robotic assembly on a full architectural scale (Willmann

et al. 2015). Following previous, smallerscale experiments of the group, the design
concept focussed on using ordinary, low-engineered softwood elements with a
simple, linear geometry and notch-free joints, to create complex, versatile, and
highly articulated structures (Gramazio, Kohler & Willmann 2014).

The roof structure, covering an area of 2,308 m2, consists of 168 individual
trusses, spanning maximum 14.70 m between steel box beams of the prima-
ry structure (Fig. 1) (Adam 2014). Each timber truss is composed of average of 370
geometrically unique timber slats, stacked in a layerwise alternating way and
joined together by nails connecting each two overlapping slat ends. Using a ro-
botic setup, the elements are fabricated and assembled sequentially in a fully
automated process, where each slat is cut to size and then directly placed and
joined with the rest of the truss structure (Fig. 19) (Apolinarska et al. 2015). Using simple
elements that require minimal and fast processing (simple cuts) and focussing
on full automation in assembly are key features that distinguish the project from
other recently realised nonstandard timber structures, which make intense use
of multiaxis CNC woodworking techniques to produce complex, curved elements
with intricate connections and which are then assembled manually.

1.2	 Computational Workflow
Such fabricationdriven design addressing a novel construction method radically
challenges the conventional, phase-based process where the level of detail in-
creases with each planning stage. Here, it was mandatory that design, analysis,
and execution planning are tightly integrated and developed concurrently be-
cause of the obscure and complex dependencies between geometry, structural
behaviour, and fabrication details. In consequence, it was not possible to gen-
erate a valid (structurally sound, feasible to fabricate, and architecturally correct)
solution explicitly from a given set of input parameters.

With a “heavy” digital model, large data sets, long calculation times, and
tight schedule to produce a final model ready to fabricate, our strategy was to
start with a simple and mostly underdimensioned model, and to iterate through
the loop of analyses and local modifications until all problems were resolved. The
key challenge was therefore to establish an integrated workflow to facilitate this

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

243

28.82 m

80.07 m

Figure 1. Isometric overview of the roof. It is composed of 168 timber trusses supported by a primary steel structure.

15m

1.16m 1.16m

skylightsinsulation + weatherproofing smoke exhaust

sprinklertimber truss

steel box beam

lighting

Figure 2. A pair of timber trusses with subsystems (sprinkler system, smoke exhaust, electrical, lighting, skylights).
Insulation and weatherproofing layers are applied directly onto the structure, without additional boarding. Each truss rests
on steel box beams, with one fixed bearing and the other movable in the longitudinal direction.

generate nail
posi ons

calculate

design
model

node+line
model

+ loads, supports..

END Fabrica on

build
model

generate model
ok?

Y

+ guide geometry
+ constraints

+ ini al parameters N
generate

Rhino

Rhino

txt

RstabPython+RS-COM Excel

Python+Rhino

Excel

txt

txt

Python

Python+Rhino

post-
processing

new slat
dimensions

fabrica on
data

nails
placed

sta c
proofs

nails
required

nail pa ern

modica on

sta c analysis

geometry

START

Figure 3. Schematic of the established computational workflow.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

244

process. In short, each iteration consisted of four steps: First, generate the model
given the current parameters (see Section 2). Then, perform structural calculations
and evaluation (see Section 3). Next, generate nail pattern for each connection,
observing structural and fabrication constraints (see Section 4). Finally, assess
the results of both simulations and perform modifications (see Section 5). Apart
from several bespoke algorithmic methods, the workflow involved data manage-
ment and data exchange, error-proofing and evaluation methods.

2.	Geometric Design
2.1	 Geometry Setout
The overall undulating form of the roof is defined layerwise by pairs of cubic Bézier
curves. The curves are discretised by setout points P (Fig. 4), which are then used
as direct and fix reference for the truss geometry. Their position is derived from
a possibly uniform triangulation of the truss and locally compromised by inter-
faces with building components such as skylights, exhaust shafts, sprinkler pipes,
or primary structure (Fig. 2). With setout points referring to the outer boundary of
the roof shape, the position of a slat’s axis line L depends on its width w (Fig. 5).
The given setout points and widths create a geometric stencil for elements in a
layer. Due to the free-form overall shape of the roof, in each layer the stencil is
different, and there is a slight shift between slats in neighbouring layers.

2.2	 Layering
While the stencil is needed to determine geometry of the elements (axes, node
points, end cuts of each slat) in each layer, the layering pattern defines which el-
ements actually occur in the truss – it defines the composition of chord and di-
agonal slats through all 23 layer of a truss. For example, structural logic imposes
continuity of the top and bottom chord, which could here be achieved by concat-
enating the individual elements into a symmetrically layered belts (Fig. 6) (Apolinarska

et al. 2015). The resulting pattern consists of a repeated sequence of three layers of
chord slats followed by a layer of diagonal slats. Local exceptions to this pattern
occur when some slats need to be removed, for example, below the skylights
(to let more light in) or to let smoke exhaust shafts through the roof structure
(Fig. 2). In general, the geometric setup is relatively flexible, and its principles could
easily be adapted to use in other projects.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

245

w’w

Lij
L’ij

Pi

Pj

w’
w

Pi

Pj

Lij

L’ij

Figure 5. Detail of the geometric stencil. With setout points P fixed, the position of the slat's axis L depends on its width w.

Figure 6. Layering pattern. (Apolinarska et al. 2015).

P1

P0 P2
P4

P6
P8

P10
P12

P14 P16

P18

P20
P22 P24

P3
P5

P7

P9
P11

P13 P15
P17

P19

P21 P23

Figure 4. Setout geometry for a layer: a pair of Bézier curves, setout points P and stencil geometry.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

246

3.	Structural Analysis
3.1	 Structural System
Through the layered buildup, the structural system of the timber trusses differs
slightly from that of a typical truss, where the axes of diagonal and chord members
usually intersect at nodal points. This is not the case here (Fig. 7), and the resulting
eccentricity causes considerable shear forces and bending moments. Additionally,
the load flow in cross direction (which is also wood’s weak direction) is diverted, be-
cause the axes of connecting member do not intersect as they lie in different layers.
Thus, the connections are modelled as connector-beams. Further, connector-beams
have to be geometrically decomposed into segments so that the connector is nor-
mal to the shear plane (Fig. 8) to get the right section forces. Together, all these phe-
nomena were challenging to represent and interpret with a beam statics program.

3.2	 Analysis
The structural analysis process consisted of three steps: model setup, calculation,
and post-processing. The model setup included acquiring the geometry (node
points and members) into a structural analysis software and defining loads, load
cases, supports, cross-sections, etc. From the calculation results, the internal
forces were post-processed to produce twofold output information. The first out-
put information was derived from beam proofs based on buckling, bending, nor-
mal and shear forces, and indicated which slat had to be wider to satisfy these.
The second output information was the required number of nails per connector
as a result of the internal forces in the connector beams.

3.3	 Connection
The specific structural and fabrication logic of the structure required a connection
method that would be both geometrically flexible and fully automatable. Further,
because the static system of the coupled trusses is statically highly indeterminate,
ductile connections were necessary to transfer loads – a brittle failure of con-
nections could lead to a progressive collapse of a truss. Therefore, a connection
technique using 90 mm long grooved nails, with a shaft diameter of d = 3.4 mm,
proved to be both the simplest and the most applicable solution for this project.
Automated nailing is a fast, cost-effective, and well-established CNC technology
in timber construction. Compared to bolts, screws, or bulldog connections, re-
sistance of one nail is quite smal; however, due to their relatively small diame-
ter nails can be placed closer together and fit better in the connection’s overlap
area. In result, the sum of the nails can create enough resistance, more than
the alternatives. The downside of this connection technique is the exceptional
complexity that arises from combining multiple layers with different geometries.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

247

Figure 9. (left) Minimal distances for nailed connections
according to the Swiss timber code (SIA 265:2003 Timber
Structures 2003). For this project, both slats are considered
loaded, so the edge offset are 6d (cross to fibre) and 15d
(along fibre). Distances between nails are 5d and 10d
respectively.

3

4

5
8

7
4

5

6

4
11

6
7

9

member
connector
slat’s axis
nails required

Figure 7. Point-and-line model generated for Rstab input. Figure 8. Detail of point-and-line model. The number of
nails required is given individually for each connectorbeam.
Through the eccentric connection, chord slats are
represented by three (in general not colinear) members.

 




































 


































Figure 10. Interpretation of the spacing rules as elliptic lockout areas and comparison with a rhombic grid layout.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

248

The Swiss timber code (SIA 265:2003 Timber Structures 2003) specifies
rules for nailed connections, including minimum distances to slats’ edges and
between nails, depending on the fibre direction and the nail’s shaft diameter d,
as represented by a rhombic grid in Fig. 9. This distribution, however, is inefficient
if multiple slats are overlapping with different angles between them. Instead,
the distances were interpreted as a pair of elliptic lock-out areas around each
nail, with long axes of the ellipses aligned with fibre directions of the two corre-
sponding slats (Fig. 10). The edge offsets, resulting in a polygonal feasibility region,
were calculated individually for each pair of connecting slats.

Still, the nails in each connection had to observe nails from the layer above
and below. With a total of 129,840 connector-beams, each with individual geo-
metric conditions, distribution of all the required nails in a reasonable, efficient,
and compliant way could only be solved with computational methods. The next
section describes the algorithm developed for this purpose.

3.4	 Testing
The various assumptions mentioned above needed to be refined and confirmed
by physical tests. First, small specimens consisting of three slats were tested to
determine shear and bending stiffness parameters for connectorbeam elements
in the calculation model. Also, connections with asymmetrically distributed nails
were tested to determine the impact of symmetry on the performance of the
connection – strongly asymmetric distribution of nails increases the risk of splitting
of wood fibres due to onesided lateral tension forces. Finally, 15 full-scale trusses
were load tested to get further assurance in regard to statics, and production
processes. With the use of statistics the failure mode and the corresponding
load could be predicted quite precisely.

4.	Nail Placing Algorithm
4.1	 Problem Description
Given the geometry of connecting slats, the challenge for the nail-placing al-
gorithm is to find a solution to how to distribute the required number of nails
in the connections in a way that is compliant with the spacing rules described
in the previous section. Moreover, the nails should be distributed evenly
(symmetrically). Also, a fabrication requirement is that each slat has at least
one fix-nail at each end – a nail that lies exactly on the slat’s axis line. As the
trusses are assembled by a robot, the first nail has to be placed when the
gripper holding the slat is still closed in order to fix the slat in place precise-
ly. The fact that the gripper is still holding the slat in that moment constraints
the fixnail’s position (Fig. 20).

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

249

Node

1
3

5
7

9
11

13
15

17
19

21

0
2

4
6

8
12

14
16

18
20

22

10

layer
numbering:

layer-node: chord

a

b

layer-node: diagonal

feasibility region above
feasibility region below

a

b

Figure 11. Node and layer-node.

7

to get a robust polygon clipping behaviour, we decided to use a 2D polygon clipping library based on
Vatti’s algorithm (Vatti 1992; Murta 1997). For this, the lock-out zone ellipses are represented by a
polygon with 72 vertices. The resolution of the ellipses, and of the resulting shape of the feasibility
region, is an important parameter in the subsequent algorithm (Fig. 12).

The nail-placing procedure starts by finding a feasible fix-nail configuration for all layers. After that, the
remaining nails are distributed. For each layer-node there are two feasibility regions, so first we choose
whether the new nail should be placed in the upper or lower one. If both feasibility regions are nonempty,

let 𝛥𝛥	: = 𝑛𝑛& − 𝑛𝑛((where 𝑛𝑛& = number of nails required, 𝑛𝑛(= number of nails placed). If both connectors

do not yet have enough nails (i.e. 𝛥𝛥) > 0	 ∧ 	𝛥𝛥- > 0), then the lower of the ratios 𝐴𝐴/𝛥𝛥 (where 𝐴𝐴 = area
of the feasibility region) wins; otherwise, the higher of		(𝛥𝛥), 	𝛥𝛥-) wins. Next, we randomly choose from
vertices on the border of the selected feasibility region, restarting the algorithm a few times with different
seeds. Using randomness helps to avoid bias and thus proved to improve the overall behaviour of the
algorithm. Next, we evaluate the randomly selected candidates in terms of symmetry and discard
solutions below the acceptable threshold. The symmetry of a nail pattern with respect to a slat is defined
as the average of signed distances of the nails to the axis line. From the remaining candidate points, we
pick the best solution to place a nail. Alternatively, one could restrict the choice of the random vertex to
the convex hull of the feasibility region. This would automatically solve the dependence on the
resolution.

The nail-placing algorithm iterates as long as the feasibility regions are nonempty. It may not be able to
place all the required nails, or it may fail to place a fix nail, or it may be able to place more nails than
needed. This can cause problems: Redundant nails placed when solving for diagonal slats can impair
the completion of the vertex population algorithms in the chord slats. To avoid this, if no solution was
found after two trials, redundant diagonal nails which intersect the considered feasibility region are
deleted. A surplus of more than 50% of required nails is also economically undesirable. The superfluous
nails above the +50% threshold are therefore deleted. The selection is done carefully to maximize the
symmetry in distribution around slat’s axis.

Def VertexPacker(AlreadyPlacedNails, GeometricalSituation, RequiredNails):
 Generate the initial feasibility areas
 Loop as long as there is some nonempty feasibility area:
 Choose either upper or lower connector
 Pick m random vertices on the border of the feasibility area
 Discard vertices harming symmetry
 Pick best vertex
 Place a nail
 Recalculate both feasibility areas affected by this nail

counter = 0
solutions = []

While counter < 15:
 counter += 1

 If counter==3 and not solutions:
 DeleteRedundantNailsOnDifferentLayers(AlreadyPlacedNails)

 packing = VertexPacker(AlreadyPlacedNails, GeometricalSituation, RequiredNails)

 If enough_nails:
 result = [#redundant_nails_upper + #redundant_nail_lower, symmetry, packing]
 solutions.append(result)

Figure 12. Nail placing algorithms pseudocode.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

250

4.2 Splitting the Problem into Sub-problems

Each node, understood as the sequence of connections of 23 layers of slats, re-
fers to 22 pairs (“a” and “b”) of connectors. The nail-placing problem is indepen-
dent for each node. The problem of placing nails in the entire node can be split into
a set of layer-node nail problems (Fig. 11). By layer-node we denote an abstraction
that describes all nails going through a certain slat in the node, i.e. those placed
in this slat (lower connector) and those from the slat above (upper connector).

There are two types of connections: between a chord slat and a diagonal, and
between two chord slats. The nails inside diagonal slats (in diagonal layer-nodes)
are placed first (layers 3-4, 7-8, 11-12, 15-16, and 19-20). The remaining nails are
placed by solving for the chord slat in the middle of the belt (chord layer-nodes in
layers 1-2, 5-6, 9-10, 13-14, 17-18, and 21-22) – this task is partially constrained
by the already placed nails from the diagonal layer-nodes.

4.3	 Random Vertex Population
Our first studies to solve the nail spacing problem were based on physical sys-
tems, for example, floating circles (Hockney & Eastwood 1981). However, it soon became
apparent that the problem is too stacked to get a good floating behaviour. Also,
the nail spacing task is not an optimisation problem, but one aiming at finding
a feasible solution.

Therefore, an alternative approach was pursued: Nails are added to the
solution one by one, placed on the border of the feasibility region. At the begin-
ning, the feasibility region is constructed by edge offsets of the overlapping slats.
When a nail is placed, and a corresponding nonconstant offset of its lockout zone
is subtracted (Fig. 13). This means that the resulting new feasibility region may as
well be disjoint. Experience shows that Boolean clipping in 3D CADsoftware
lacks robustness (Schirra 2000). In order to get a robust polygon clipping behaviour,
we decided to use a 2D polygon clipping library based on Vatti’s algorithm (Vatti

1992; Murta 1997). For this, the lock-out zone ellipses are represented by a polygon
with 72 vertices. The resolution of the ellipses, and of the resulting shape of the
feasibility region, is an important parameter in the subsequent algorithm (Fig. 12).

The nail-placing procedure starts by finding a feasible fixnail configuration
for all layers. After that, the remaining nails are distributed. For each layernode
there are two feasibility regions, so first we choose whether the new nail should
be placed in the upper or lower one. If both feasibility regions are non-empty, let
∆: = nR – nP (where nR = number of nails required, nP = number of nails placed).
If both connectors do not yet have enough nails (i.e. ∆u > 0 ∧ ∆l > 0), then the
lower of the ratios A / ∆ (where A = area of the feasibility region) wins; other-
wise, the higher of (∆u > , ∆l ) wins. Next, we randomly choose from vertices on
the border of the selected feasibility region, restarting the algorithm a few times

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

251

chord slat above

chord slat below diagonal slatdia
go

na
l s

lat

feasibility region
above

feasibility region
below






Figure 13. A step-by-step example of solving a diagonal layernode. Top left: Initial situation. Shaded areas denote the
initial feasibility regions created by edge offsets. Top right: Fixnails placed at axis lines. New remaining feasibility regions
after subtracting the offsets of lock-out areas, including those from nails from other layers not shown here. Bottom left:
Situation after 10th iteration. Lockout areas of the same colour cannot intersect. In the lockout areas of different colours,
only the ellipses in the layer they share cannot intersect, which is here the layer of the diagonal slats (ellipses aligned
with axes of diagonals). Bottom right: Situation near completion. On the right there is still a non-empty feasibility region
where two more nails could be placed.

Figure 14. Final distribution of nails in a diagonal layer-node from the example in Figure 13 (isometric view from top).

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

252

with different seeds. Using randomness helps to avoid bias and thus proved to
improve the overall behaviour of the algorithm. Next, we evaluate the randomly
selected candidates in terms of symmetry and discard solutions below the ac-
ceptable threshold. The symmetry of a nail pattern with respect to a slat is defined
as the average of signed distances of the nails to the axis line. From the remain-
ing candidate points, we pick the best solution to place a nail. Alternatively, one
could restrict the choice of the random vertex to the convex hull of the feasibility
region. This would automatically solve the dependence on the resolution.

The nail-placing algorithm iterates as long as the feasibility regions are non-
empty. It may not be able to place all the required nails, or it may fail to place a
fix-nail, or it may be able to place more nails than needed. This can cause prob-
lems: Redundant nails placed when solving for diagonal slats can impair the com-
pletion of the vertex population algorithms in the chord slats. To avoid this, if no
solution was found after two trials, redundant diagonal nails which intersect the
considered feasibility region are deleted. A surplus of more than 50% of required
nails is also economically undesirable. The superfluous nails above the +50%
threshold are therefore deleted. The selection is done carefully to maximise the
symmetry in distribution around slat’s axis.

5.	Modification Strategies
5.1	 Challenge
Both structural analysis and nail-placing procedure can yield negative results,
meaning that the model needs some modification. Since the problems proved
to be highly differentiated, no generalised solutions could be found. Also, as the
overall form of the structure and the setout points were overconstrained, possi-
ble spectrum of modifications was confined to dimensioning (incrementing the
slat’s width) and geometric details (extending the slat’s end cut) (Fig. 15). The choice
of slat sizes was limited to three: 115 x 50 mm, 140 x 50 mm and 180 x 50 mm,
which is a compromise between the necessary differentiation and economy of
the fabrication process.

The problems of the first type – the failed beam proofs (as described in
Section 3) – are explicit and non-negotiable. They are treated in the first place by
changing the indicated slats’ sizes as required by structural analysis. The second
type of problems concerns the connection: Either some of the required nails
or a fixnail could not be placed. In general, the solution is to change (usually in-
crease) the feasibility area of the connection. These problems are far less trivial
to solve. One of the reasons is that the problem does not explicitly indicate which
element to modify – each connection is shared by two elements and in most
cases changing only one of them is sufficient. Also, increasing the size of a slat
to solve a problem at one end changes the situation in all of its connections at

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

253

the other end too. Moreover, the effect of the modification cannot be evaluated
exactly; this would require repeating the structural and fabrication analysis for
each considered choice – technically possible, but inefficient. The actual number
of nails that fit into the initial feasibility region cannot be directly deduced from
its area (because it depends on the situation in other layers) – an estimate must
suffice instead. In some cases, the modification does not increase the overlap
area at all (Fig. 15). Again, modifying the size of a slat changes its axis and moves
the structural node points.

5.2	 Method
The solving procedure can be applied to each truss individually, which consid-
erably reduces the complexity and speeds up the process. For each truss, first
we try to solve all fixnail problems. Fortunately, they are rare, and their cause is
easy to identify and eliminate. Next, we try to solve the “missing nail” problems,
starting with the most economical method: extending the slat’s end. For each
connector there is only one possible slat to extend, and the problematic connectors
are treated in the order according to the number of missing nails.

For each modification, the new feasibility region is calculated to check if its
area really increased. For any applied modification, areas of all affected (shared
by the slat) feasibility regions must be recalculated to estimate the number of
nails that they could additionally accommodate and to add this amount to each
connector’s number of nails already placed (nP + nA).

The remaining “missing nail” problems are solved by enlarging the slat’s
width. Here, to establish a solving order, we chose a “greedy algorithm” mech-
anism in which the “worst” elements are treated first. The “worst” slat is deter-
mined with a heuristic approach by combining various parameters to sort all slats
according to four criteria in the following sequence: difficulty (S1), then the sum
of all nails required (nR) in all connectors (c) attached to a slat (𝑛𝑛&) in all connectors (𝑐𝑐) attached to a slat (𝑆𝑆8 = 	− 𝑛𝑛9&

:
9;6), followed by slat’s current size (,

and finally nails overload (𝑆𝑆>), which is a ratio of the sum of missing nails (𝑛𝑛) to the required nails
(𝑛𝑛&): 𝑆𝑆> = 	 𝑛𝑛9?	/ 𝑛𝑛9&

:
9;6

:
9;6 . Difficulty (𝑆𝑆6) is a sum of three values: sum of all nails missing in all its

connectors (𝑛𝑛9?
:
9;6), nails missing (𝑛𝑛@?) in slat’s worst connector (connector with the highest number

of nails required, and nails missing (𝑛𝑛A?) in slat’s worst node (node with highest number of nails required
in its

 ,

extend end

larger
feasibility
area

increase
width no effect

increase
width

Figure 15. Two possibilities of modifying the overlap zone geometry: by extension and by increasing the size of a timber
element. Extensions are preferred for the sake of material economy, but cannot be applied to diagonal members (as it
would increase the eccentricity) and were not allowed in lower chord (for visual reasons) and certain further exceptions.
Increasing size in chord-chord connections may be ineffective. (Apolinarska et al. 2015).

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

254

followed by slat’s current size (S3=w), and finally nails overload (S4), which is a ratio
of the sum of missing nails (nM) to the required nails

(𝑛𝑛&) in all connectors (𝑐𝑐) attached to a slat (,
and finally nails overload (𝑆𝑆>), which is a ratio of the sum of missing nails () to the required nails
(𝑛𝑛&): 𝑆𝑆> = 	 𝑛𝑛9?	/ 𝑛𝑛9&

:
9;6

:
9;6 . Difficulty (

connectors (𝑛𝑛9?
:
9;6), nails missing (𝑛𝑛@? with the highest number

of nails required, and nails missing (𝑛𝑛A?) in slat’s worst node (node with highest number of nails required
in its connectors): 𝑆𝑆6 = 𝑛𝑛9?

:
9;6 + 	𝑛𝑛@? . If the worst slat cannot be modified (because it has

already maximal size) or the modification is not effective, try other slats connected to its worse end.
After each modification, we sort the list of elements again and remove all “resolved” ones. The process
iterates until the list is empty.

 .
Difficulty (S1) is a sum of three values: sum of all nails missing in all its connectors

(𝑛𝑛&) in all connectors (𝑐𝑐) attached to a slat (𝑆𝑆8 = 	− 𝑛𝑛9&
:
9;6), followed by slat’s current size (𝑆𝑆< = 𝑤𝑤),

and finally nails overload (𝑆𝑆>), which is a ratio of the sum of missing nails (𝑛𝑛?) to the required nails
(𝑛𝑛&): 𝑆𝑆> = 	 𝑛𝑛9?	/ 𝑛𝑛9&

:
9;6

:
9;6 . Difficulty (𝑆𝑆6) is a sum of three values: sum of all nails missing in all its

connectors (𝑛𝑛9?
:
9;6), nails missing (𝑛𝑛@?) in slat’s worst connector (connector with the highest number

of nails required, and nails missing (𝑛𝑛A?) in slat’s worst node (node with highest number of nails required
in its connectors): 𝑆𝑆6 = 𝑛𝑛9?

:
9;6 + 	𝑛𝑛@? + 	𝑛𝑛A?. If the worst slat cannot be modified (because it has

already maximal size) or the modification is not effective, try other slats connected to its worse end.
After each modification, we sort the list of elements again and remove all “resolved” ones. The process
iterates until the list is empty.

 , nails missing (nkM) in slat’s worst connector (connector with the highest
number of nails required, and nails missing (nqM) in slat’s worst node (node with
highest number of nails required in its connectors):

(𝑛𝑛&) in all connectors (𝑐𝑐) attached to a slat (𝑆𝑆8 = 	− 𝑛𝑛9&
:
9;6), followed by slat’s current size (,

and finally nails overload (𝑆𝑆>), which is a ratio of the sum of missing nails () to the required nails
(𝑛𝑛&): 𝑆𝑆> = 	 𝑛𝑛9?	/ 𝑛𝑛9&

:
9;6

:
9;6 . Difficulty (𝑆𝑆6) is a sum of three values: sum of all nails missing in all its

connectors (𝑛𝑛9?
:
9;6), nails missing (𝑛𝑛@?) in slat’s worst connector with the highest number

of nails required, and nails missing (𝑛𝑛A?) in slat’s worst node (node with highest number of nails required
in its connectors): 𝑆𝑆6 = 𝑛𝑛9?

:
9;6 + 	𝑛𝑛@? + 	𝑛𝑛A?. If the worst slat cannot be modified (because it has

already maximal size) or the modification is not effective, try other slats connected to its worse end.
After each modification, we sort the list of elements again and remove all “resolved” ones. The process
iterates until the list is empty.

 . If
the worst slat cannot be modified (because it has already maximal size) or the
modification is not effective, try other slats connected to its worse end. After
each modification, we sort the list of elements again and remove all “resolved”
ones. The process iterates until the list is empty.

5.3	 Results
Although each truss was processed individually (see example in Fig. 16) and problems
were considered on a local level, the algorithm yielded consistent solutions
throughout all trusses, producing similar patterns in similar trusses (Fig. 18), thus
proving to be sufficiently robust to minor differences in input parameters, such
as rounding errors. In terms of efficiency, the number of problems reduced by
over 95% between iterations (Fig. 17). Most of the trusses were cleared after
already three to four iterations, though, some required as much as seven iter-
ations. With one full iteration costing almost 24 hours of work and calculation
time, solving the model with as few iterations as possible was favourable. At
the same time it is difficult to conjecture whether a method converging more
slowly would yield a solution that is more efficient in terms of material con-
sumption, because with the given slat sizes the size increment is often larger
than needed, especially for minor problems. In the final model, the wood vol-
ume increased by +13% to 385 m³ compared with 339 m³ of the initial model.
Nevertheless, if the roof had to be realised with one size only and dimensioned
to the worst case, the increase would have been an estimated +59% (539 m³).
It is worth pointing out that, as it is often the case in timber structures, also
here the connections were the driving factor in dimensioning of the slats. In
total, 815,984 nails were placed, with an overhead of +45.73% making use of
the surplus area to increase the stiffness of the connections and improve the
transferring loads.

6.	Implementation
The entire roof model consisted of 49,858 slat elements (represented by extru-
sions, axis lines, outlines) generated based on 3,808 pairs of input curves. The
structural representation involved 135,840 node points, 91,286 members, and
129,840 connector-beams. Handling such a “heavy” and differentiated model

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

255

0

0.5

1

1.5

2

2.5

3

3.5

Iteration 0 Iteration 1 Iteration 7

To
ta

l v
ol

um
e

[m
3]

Total volume change (f5s16)

115 mm 140 mm 180 mm

-10

-5

0

5

10

15

20

25

30

nu
m

be
r o

f n
ai

ls

connectors

Iteration 0 (f5s16)

missing placed max. possible surplus

-10

-5

0

5

10

15

20

25

30

nu
m

be
r o

f n
ai

ls
connectors

Iteration 1 (f5s16)

missing placed max. possible surplus

-10

-5

0

5

10

15

20

25

30

nu
m

be
r o

f n
ai

ls

connectors

Iteration 7 (f5s16)

missing placed max. possible surplus

Figure 16. Solving steps for an exemplary truss: an initial
model, after first and after last iteration (Apolinarska et al.
2015). Corresponding resulting wood volume with respect
to the three slat sizes: 115–50 mm (light blue), 140–50 mm
(blue), 180–50 mm (dark blue).

Figure 17. Solving steps for an exemplary truss. Number
of nails missing (black), placed (grey) and maximal possible
surplus (light grey) at different iterations.

Figure 18. Final, resolved model of the entire roof structure, colour-coded according to the slat's width (see legend
Fig. 16) (Apolinarska et al. 2015).

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

256

required a high degree of automation in modelling and an efficient and intuitive
data management strategy for query, survey, and control.

The architectural geometric model was generated using custom-made
libraries based on RhinoCommon SDK of the 3D Modelling software McNeel
Rhinoceros©. For the structural analysis in the software Dlubal Rstab©, the model
was assembled with bespoke scripts using API modules that directly access the
application (RS-COM) to overcome the hurdle of manually setting the extremely
high amount of individual properties for each element. The post-processing of
the calculation results was carried out in Excel with help of VBA macros.

The computational workflow relied heavily on intense exchange of large
amounts of data, and the output format of the processed data at different steps
of the workflow could be tailored accordingly, be it a 3D model or a data-set in text
or spreadsheet format. Conventional representation methods such as 2D plans,
elevations, and sections were mostly unfit to portray the relevant information.

Needless to say, error-proofing demanded special consideration, and cross-
checking procedures had to be established. For example, the development of the
highly complex nail pattern algorithm required an independent control script to
examine the reported nail pattern results with the geometric solution, by redraw-
ing the fibre-aligned ellipses and checking if they are collision-free. Additionally,
at all stages the geometry and calculations were inspected at random, including
visual control, and checked for consistency.

As mentioned earlier, the final, completely resolved model provided not only
all calculations and detailing, but also output data for fabrication (Fig. 3). This feature
is a radical difference to the conventional execution planning process and a major
step forward to a complete, gapless digital chain. These output data were then
converted into machine code of the large scale 6-axis gantry robot with which
the roof trusses were built (Kramer 2016) (Fig. 19).

7.	 Conclusions
The project exemplifies the specific modus operandi needed for fabrication-driven
design, which requires a concurrent collaboration between disciplines that are
usually involved at different project stages (design, detailing, structural analysis,
fabrication, and execution planning). It also highlights the importance of team-
work as soon as challenges and risks faced by planners and stakeholders go be-
yond the standard code of practice.

Overall, although many of the developed methods are very case specific,
the core ideas of the project, i.e. the computational workflow, should be easily
transferable to future projects. Still, the established computational framework
holds a lot of potential for further development, for example by tighter integra-
tion of programming interfaces to simplify data exchange.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

257

Figure 21. Interior view of the completed roof. Figure 22. Detail soffit view of the completed roof. The
varying width of the diagonal slats manifests itself in the
connections. The shadow gaps between the timber trusses
allow for building tolerances and shrinking and swelling
of wood.

Figure 19. Automated fabrication and assembly using a
6-axis gantry robot (ERNE AG Holzbau) (Willmann et al.
2015).

Figure 20. Fixing a slat with a fix-nail. After all slats in
the layer have been placed and fixed, all remaining nails
are shot.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

258

Acknowledgements
The authors would like to thank the collaboration partners of the “Sequential Roof” project for both giving the opportunity
of realising such an experiment and their generous support in the overall project. This includes the following realisation
and consulting partners: overall planning: Arch-Tec-Lab AG (Guido Züger); structural engineering: Dr. Lüchinger+Meyer
Bauingenieure AG; timber engineering: SJB Kempter Fitze AG; manufacturing and realisation: ERNE AG Holzbau; digital
integration and fabrication control: ROB Technologies AG; structural design consultancy: Prof. Dr. Josef Schwartz (ETH
Zurich); timber structure engineering consultancy: Prof. Dr. Andrea Frangi (ETH Zurich). Much of the “Sequential Roof”
project would have not been possible without the valuable support of the Institute of Technology in Architecture (ITA) and
ETH Zurich, which, in fact, initiated and supported this exciting endeavour. We also thank our Gramazio Kohler Research
colleagues Michael Knauss and Jaime de Miguel, who contributed greatly to this project in its earlier phases.

References
Adam, Hubertus. 2014. “Holzkonstruktionen, Digital Fabriziert.” Zuschnitt – proHolz Austria. Accessed at http://www.

proholz.at/zuschnitt/53/holzkonstruktionen-digital-fabriziert/

Apolinarska, Aleksandra Anna, Michael Knauss, Fabio Gramazio, and Kohler Matthias. 2016. “Arch_Tec_Lab Roof.” In
Advancing Wood Architecture. London: Routledge. (in press)

Gramazio, Fabio, Matthias Kohler, and Jan Willmann. 2014. The Robotic Touch – How Robots Change Architecture.
Zurich: Park Books.

Hockney, R. W., and J. W. Eastwood. 1981. Computer Simulation Using Particles. New York: McGraw-Hill.

ITA. 2016. “Arch_Tec_Lab.” Accessed March 30 at http://ita.arch.ethz.ch/index.php/de/arch-tec-lab

Kramer, Martin. 2016. “Individual Serialism Through the Use of Robotics in the Production of Large-Scale Building Com-
ponents.” In Robotic Fabrication in Architecture, Art and Design, 460–67. Cham: Springer International Publishing.

Murta, Alan. 1997. “GPC – General Polygon Clipper Library.” Accessed at http://www.cs.man.ac.uk/~toby/alan/software/

Schirra, Stefan. 2000. “Robustness and Precision Issues in Geometric Computation.” In Handbook of Computational Ge-
ometry, edited by J.-R. Sack and J. Urrutia, 597–632. Amsterdam: Elsevier.

SIA 265 : 2003 Timber Structures. 2003. Switzerland. Accessed at http://www.webnorm.ch/normenwerk/ingenieur/sia
265/e/D/Product

Vatti, Bala R. 1992. “A Generic Solution to Polygon Clipping.” Commun. ACM 35 (7). New York, NY, USA: ACM: 56–63.

Willmann, Jan, Michael Knauss, Tobias Bonwetsch, Aleksandra Anna Apolinarska, Fabio Gramazio, and Matthias Kohler.
2015. “Robotic Timber Construction – Expanding Additive Fabrication to New Dimensions.” Elsevier: Automation in
Construction, 16–23. doi:10.1016/j.autcon.2015.09.011

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_17, ISBN 978-3-7281-3778-4
http://vdf.ch/advances-in-architectural-geometry-2016.html

