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Abstract
In this paper we focus on transformable structures and more specifically on struc-
tures that can change from a flat shape to a curved shape in a continuous pro-
cess. We present a method for building a mechanism from any kind of curve that 
can be flattened by modifying only one degree of freedom. Such mechanisms are 
based on scissor-pair mechanisms; recently, their technology has been improved 
to be able to match all sorts of curved shapes. We applied this method in a con-
temporary ongoing project at the “Jet d’Eau” in Geneva, a structural footbridge 
spanning 12 meters over a thin lake channel. This footbridge consists of 30 cou-
ples of stainless-steel scissors that can be either flat or raised and in the raised 
position looks like a wave with a sinusoidal geometry. This footbridge resolves 
a public mobility issue and combines wheelchair and gentle mobility with boat 
passing in the lake channel: When the footbridge is horizontal, the deck is flat 
and pedestrians can pass even if in a wheelchair while the boat traffic is closed; 
when the footbridge is raised, the deck becomes stairs so that pedestrians can 
pass on it and boats can navigate underneath.
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1.	 Introduction
There are many different types of movable bridges around the world, most of 
which use basic movements such as translation or rotation. Generally these 
bridges allow only one traffic mode: The pedestrian traffic is stopped when flu-
vial traffic is active and vice versa. Indeed, most movable bridge structures are 
made with discontinued mechanisms, so that the deck is interrupted by a gap 
when the bridge is raised.

In June 2013, an association for the mobility of handicapped people launched 
a project to provide a large public access to the “Jet d’Eau” in Geneva. The aim 
was to build a timber deck 4 m wide to enlarge the existing jetty from the early 
20th century made of stone which provides access to the harbour.

In its place, we developed a movable footbridge to allow the passing of 
wheelchairs and pedestrian traffic in the resting position, while boat-passing 
and non-wheelchair pedestrian traffic remain possible in its raised position. Con-
struction on site commenced in October 2015 and should be finished by the end 
of June 2016. Figure 1 shows two renderings of the footbridge in the resting and 
raised positions.

2.	Issue
In order to avoid an interrupted structure with a gap in the deck, we needed to 
develop a mechanical system with continuous transformation of its shape, such 
as stretch movements or homothetic transformations. Our research focussed on 
a fundamental issue: How to build a curved structure that can transform itself into a 
flat structure? The aim was to build a structure with only one degree of freedom 
that can be transformed without stress or damage to its continuity, as shown in 
Figure 2. We focussed our study on structures of constant height.

3.	Sources of Inspiration
Mechanical systems with one degree of freedom are rare. The most popular is 
the scissor mechanism found in engines such as cranes, man-lift platforms, ac-
cordion barriers, trivets, and toys.

One of the objects inspiring our structure was the Hoberman Sphere, a small 
toy invented in the 1990s by Chuck Hoberman (Hoberman 1991, US Pat. 4942700) based 
on a pair of scissors that maintain a constant angle while moving and allows the 
creation of expanding circles. Chuck Hoberman carried out several projects using 
this mechanical concept, some of which reached architectural dimensions such 
as the Iris Dome (Hoberman 1991, US Pat. 5024031).
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Figure 1. Top: In the resting position the footbridge is flat and allows wheelchairs and pedestrian traffic to pass. Bottom: 
In the raised position the footbridge is curved and allows boat-passing underneath the bridge as well as non-wheelchair 
pedestrians to pass over the bridge by walking on stairs. Courtesy of Christian Tellols.

Figure 2. The expected transformation must be continuous, dictated by only one parameter.
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The scissor mechanism was developed in 1965 by Perez Pinero (Pinero 

1965, US Pat. 3185164) as a movable theatre structure and rediscovered in 1974 by  
Theodore Zeigler (Zeigler 1974, US Pat. 3968808) for a collapsible structure. It has since 
been intensely studied and improved, in particular by Escrig and Valcarcel (1993, 

71-84), and then by Kassabian, You and Pellegrino (1999, 45-56). It has also been 
widely used in applications for deployable/retractable roof structures. Called 
pantographic scissors by Hanaor and Levy (2001, 211-229), this mechanism led 
to many derived concepts as a pair of scissors where the pivot is in the cen-
tre, a pair of scissors where the arms do not have the same length, a pair of 
scissors where the arms are angulated as in Hoberman Sphere, and a pair 
of scissors where the pivot can slide along one arm in a slot. Not to forget 
all the combinations of the various scissors concepts. Indeed, despite the 
huge range of existing scissors concepts, seldom did they actually lead to a 
concrete project.

In a recent article, X. Chen and L. Liu (Zhang et al. 2016) present a topological 
method for building a scissor structure that matches a target shape as precise-
ly as possible starting from a given source shape. Unlike this global generative 
approach, we propose a simplified approach that allows us to choose a solution 
by exploring different possibilities.

Another source of inspiration is the Rolling Bridge, located in London and 
designed by Thomas Heatherwick in 2004. This footbridge consists of a struc-
ture moved by seven pairs of hydraulic cylinders that can transform themselves 
into a circle by rolling.

This interesting project opens up new possibilities by using engine technol-
ogy and robotics in architecture and structural engineering. 

4.	Curve with Scissor Mechanism
First of all, we looked at traditional scissor mechanism whereby the scissor pair 
comprises two arms linked together at a central pivot. Here, the scissor always 
forms a rectangle, with the length of each side changing when the arms revolve 
around the pivot. Since we only studied structures with a constant height, each 
scissor must have the same height h.

When the central pivot is shifted vertically, the scissor changes its shape 
from a rectangle to a trapezium, as shown in Figure 4.

The trapezium is an interesting element that allows us to build curved shapes 
thanks to its two inclined sides.

It is possible to build many different trapezium chains to run along any curve. 
For a standard path p and a common height h for each trapezium, the chain re-
sults upon choosing a starting angle γ for the first element; each following angle 
is then determined by symmetry, see Figure 5.
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Figure 3. Sources of inspiration using a scissor mechanical system. Left: a scissor crane. Middle: a widespread trivet.  
Right: the Hoberman sphere.

Figure 4. Left: the traditional scissor maintains a rectangular geometry while moving. Right: a scissor with the central pin 
shifted down, causing the geometry to change from a rectangle to a trapezium.

p

h

γ

Figure 5. Elaboration of a trapezium chain. A given curve is discretised into a polyline with a constant path,  
the angle γ determining the trapezium chain. Many chains are possible. It is also possible to have a different path p for 
each trapezium.
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In order to build the scissor inside the trapezium chain, we have to solve 
an equation with several parameters. Indeed, all scissors are linked by one side 
so they have to fit the same conditions: same height h, path p, and angle a be-
tween both inclined sides.

5.	Solution of the Trapezium Equation
Even if each trapezium has a different shape, they have the same height h and 
a base b, which corresponds to the polyline path; only the angle α is different. 
The goal is to find the position of the central pivot C such that, when arm L and 
arm l rotate of θ, their horizontal projections match to form a rectangle (see Fig. 6).

The result of transforming the trapezium into a rectangle led us to build all 
existing scissors possibilities for a given trapezium, even though these possibili-
ties might not be compatible with one another for building a chain. The next step 
consisted of choosing the valid solution among all these possibilities.

The whole family of possibilities is drawn on the left side of Figure 7 for a the-
oretical case. For each angle a, the curve represents the rectangle height h’, de-
pending on the pivot position ratio ρ ; each curve represents a family of scissors 
that have the same angle α and can transform itself into a rectangle.

From these curves we have to choose which ones match the expected height 
and intersect the horizontal line h’ = 1.7 m. Some angles might not intersect this 
line. Typically, on this graph, it is not possible to find the same height h’ for an 
angle a = 6° and an angle a = 40°. This means that, if the curvature of the shape 
leads to a trapezium with both angle values in the same trapezium string, there 
is no way to find a solution.

To solve that problem, it is possible to bring down a curve that does not inter-
sect the expected height h’ by decreasing the trapezium base b and with it path p.

At the top right of Figure 7, several curves are shown for a path decreasing 
from 1.34 m to 0.50 m. When p reaches that last figure, the curve intersects the 
horizontal line h’ = 0.17 m, making it possible to embed the scissor with α = 40° 
into the trapezium chain.

Varying the path of the trapezium makes it is possible to target a wide range 
of angle α and allows it to work on a wide range of curves.

6.	Helix with a Constant Path
As an example from the previous section, we apply the method described to a 
helix (see Fig 8).
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Figure 7. Top left: Graphic of the whole string of trapezium possibilities for different trapezium 
angles. In this theoretical case, the graphic is based on a trapezium base b = 0.7 m and a side 
length h = 1 m. Top right: Graphic of the whole string of trapezium possibilities with α = 40° 
for different trapezium bases. Bottom: Images of the scissors in the trapezium position and in 
the rectangle position. 

From these curves we have to choose which ones match the expected height and 
intersect the horizontal line h’ = 1.7 m. Some angles might not intersect this line. Typically, on 
this graph, it is not possible to find the same height h’ for an angle α = 6° and an angle α = 
40°. This means that, if the curvature of the shape leads to a trapezium with both angle values 
in the same trapezium string, there is no way to find a solution. 

To solve that problem, it is possible to bring down a curve that does not intersect the 

Figure 7. Top left: Graphic of the whole string of trapezium possibilities for different trapezium angles. In this theoretical 
case, the graphic is based on a trapezium base b = 0.7 m and a side length h = 1 m. Top right: Graphic of the whole string 
of trapezium possibilities with a = 40° for different trapezium bases. Bottom: Images of the scissors in the trapezium 
position and in the rectangle position.

Even if each trapezium has a different shape, they have the same height h and a base b, 
which corresponds to the polyline path; only the angle α is different. The goal is to find the 
position of the central pivot C such that, when arm L and arm l rotate of θ, their horizontal 
projections match to form a rectangle. 

 

 
Boundary conditions: 
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Figure 6. Diagram of the trapezium. By turning θ, the arms L and l form a rectangular geometry. 

The result of transforming the trapezium into a rectangle led us to build all existing 
scissors possibilities for a given trapezium, even though these possibilities might not be 
compatible with one another for building a chain. The next step consisted of choosing the valid 
solution among all these possibilities. 

The whole family of possibilities is drawn on the left side of Figure 7 for a theoretical 
case. For each angle α, the curve represents the rectangle height h’, depending on the pivot 
position ratio ρ; each curve represents a family of scissors that have the same angle α and can 
transform itself into a rectangle. 

Figure 6. Diagram of the trapezium. By turning θ, the arms L and l form a rectangular geometry.
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6 Helix with a Constant Path 

As an example from the previous section, we apply the method described to a helix. 

 

 
 
The helix curve is segmented into a polyline 
with a constant path p = 25 cm. 
 
 
 
 
 
 
A trapezium string is built with a single 
height h’ = 18 cm and each angle of 
trapezium is determined. 
 
The height h’ is chosen according to the 
graphic at the top of Figure 7, to produce a 
solution for every angle αi. 
 
 
 
 
For each trapezium we place the central pivot 
according to the ratio ρ, which is calculated 
based on the trapezium angle α. 
 
The scissor geometry is unique once the 
parameters h and pi have been chosen. 
Angles αi are not chosen, but rather depend 
on the curve geometry. 
 
 
 
 
When one scissor rotates, the whole scissor 
chain flattens. The rectangle height h = 31 
cm. 
 
In this example the first scissors are narrower 
to the left; this could be modified by 
increasing the path in this area. 

 

Figure 8. Construction sequence of the scissor string construction for a helix example. 

 
Figure 8. Construction sequence of the scissor string construction for a helix example.
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Existing bridge

Radius 5.2m

Path of 78cm

Radius 5.2m

Path of 104cm

Radius 5.2m

Path of 104cm

Figure 9. The curve for the scissor string is copied from the shape of the existing bridge, which remains unchanged.  
The height for clear boat passage is a strong requirement, leading to the shape of the curve, which consists of three 
circular arcs with identical radius r = 5.2 m.
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Figure 10. The initial curve permits building 15 trapeziums with same height h = 1.20 m and same angle α = ± 6°.  
The path is p = 74 cm in the middle and p = 104 cm at both edges.
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7.	 The Curve of the  
Geneva “Jet d’Eau” Footbridge

At the beginning of the project, we had no preconceived idea of what material 
should be used to construct the footbridge. In order to keep the range of pos-
sibilities open, we decided to make all the scissors with the same geometry, in 
particular to allow for moulding process or jig fabrication. 

The fact that every trapezium is identical means having every pair of scis-
sors identical. The scissors in the middle are turned down and the scissors on 
the edges are turned up. One very interesting feature of this footbridge is that 
for the footbridge to be raised the mechanism has to be extended and for the 
footbridge to come back to its flat position it has to be shortened.

Once the scissor string was known, we built a structure from the mechanism. 
Each scissor became a structural beam. This structure must respect standard re-
quirements for footbridges, in particular be stiff enough to carry the usual loads.

8.	Static Condition
Supports for a moving bridge can be a decisive issue for the structural design. 
Here the mechanism has only one degree of freedom, so it does not need many 
supports to stand erect. However, in order to provide enough stiffness and con-
trol the deflections, we decided to vertically fix two points at each edge. Of  
these four support points, one has to be fixed and the three others have to slide 
horizontally (see Fig. 11).

The hydraulic cylinder acts as a structural section that can change its length 
by changing the inside pressure. Because of the four support points and the two 
hydraulic cylinders, the mechanism becomes statically indeterminate.

The sliding points are made of bronze wear plates between a rail and the 
scissor support plates. They add a further difficulty to the calculation because 
even if the wear plates have a low friction coefficient, the hydraulic cylinder has 
to fight the friction resistance in order to raise the footbridge.

The finite element model must simulate the friction since it has an important 
impact on the structural behaviour. When the horizontal reaction is lower than the 
friction resistance, the sliding support points become fixed and the footbridge 
changes its support behaviour. The finite element model demonstrates that max-
imum stress in the hydraulic cylinder occurs during the detachment phase at the 
start of the movement.
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120cm30cm

Fixed
point

Figure 11. Diagram of the support system. Because of the fixed point position, the sliding points induce 30 cm of 
translation on the left and 1.20 m on the right.

Figure 12. Optimisation of the structural members for the two positions accomplished with a strain-energy minimisation 
routine. The thickness of the line represents where steel must be placed to improve the stiffness of the whole structure.

Figure 13. View of the final element model made with strand7, coloured with the VonMises stresses for the ultimate  
load state.
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9.	Structural Behaviour
While the shape is transforming, the span increases and each scissor rotates, 
so the distribution of stress changes significantly during the rise. The raised po-
sition causes higher stress in the scissors than the horizontal position, though 
for the joining components it is different. The structural design must cover all 
middle positions of the movement; we proceed to a non-linear analysis with 
Strand7 by increasing the length of each cylinder and then analyse the results 
at each increment.

Figure 12 shows the material repartition needed to obtain the best structural 
behaviour. The situation is almost the same for both positions though slightly 
different at the edges. Obviously, all scissors do not work the same, so even 
with the same shape we need to find a way to adapt the resistance differently 
to each of them.

At this point of the project, the materials used in the structure become the 
main concern. For durability reasons we choose a stainless steel suited to out-
side exposure, the lake atmosphere and the Jet d’Eau clouds. We agreed on du-
plex stainless steel 1.4462, which has the advantage of having a good corrosion 
resistance, high toughness to limit wear and high proof strength (Rp0,2 = 500 
MPa) (see Fig. 13).

The scissors plates are linked on each side with transoms Ø88 mm and 
12 mm thick, which create a steel frame for transversal stability. The transoms 
belong to the primary structure and also support the deck and the stair frames.

A model analysis shows that the structure has a low frequency in both posi-
tions, especially for the first lateral mode. The footbridge should thus be sensitive 
to pedestrian traffic excitation, but in reality no such effect can be felt when peo-
ple walk on it in the flat position. In the raised position, the horizontal vibration is 
perceived only at the very top of the stairs. Further measurements showed that 
employing most assemblage in bronze strongly increases the damping ratio and 
limits the discomfort due to the dynamic excitation (see Fig. 14).

The overall weight of the footbridge is about 16 tons, which breaks down 
as follows:

•	 Scissor plates	 :	 10,130 kg	
•	 Pin connectors	 :	 800 kg	
•	 Transoms	 :	 1,220 kg	
•	 Actuators 	 :	 750 kg	
•	 Stair and deck	 :	 3,400 kg	

The force in the hydraulic cylinders reaches 11 tons when raising the foot-
bridge; maximum reaction in the support is about 21 tons in serviceability state.
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A model analysis shows that the structure has a low frequency in both positions, 
especially for the first lateral mode. The footbridge should thus be sensitive to pedestrian traffic 
excitation, but in reality no such effect can be felt when people walk on it in the flat position. 
In the raised position, the horizontal vibration is perceived only at the very top of the stairs. 
Further measurements showed that employing most assemblage in bronze strongly increases 
the damping ratio and limits the discomfort due to the dynamic excitation. 

 Raised position Flat position 
First lateral mode 1.8 Hz - 1.7 Hz 2.3 Hz - 1.8 Hz 

First vertical mode 3.6 Hz - 4.4 Hz 5.7 Hz - 7.5 Hz 
Figure 14. Table of the natural frequency of the structure. The first value is calculated from the 
FE model, and the second value is measured in situ. 

The overall weight of the footbridge is about 16 tons, which breaks down as follows: 
g Scissor plates : 10,130 kg 
g Pin connectors : 800 kg 
g Transoms : 1,220 kg 
g Actuators  : 750 kg 
g Stair and deck : 3,400 kg 

The force in the hydraulic cylinders reaches 11 tons when raising the footbridge; 
maximum reaction in the support is about 21 tons in serviceability state. 

10 Hyperactive Structure 

Having hydraulic cylinders in the structural system means that the structure is 
permanently active, like a muscle in a living being. This opens a huge field of innovation for 
structural design called hyperactive structures. 

Figure 14. Table of the natural frequency of the structure. The first value is calculated from the FE model, and the second 
value is measured in situ.

Motor

Hydraulic 
cylinders

Hydraulic 
cylinders

Sensor

Deflection

Processor

If Deflection > Target
               Then Pressure
If Deflection < Target
               Then Pressure

Motor

Figure 15. Scheme of the hyperactive concept. The sensor, the processor, and the motors are part of the structure and 
must be permanently active.

Figure 16. Left: The 2 x 30 mm thick plates. Right: The 60 mm thick plates, which comprise the edge scissors.

Figure 17. The scissors’ colour depends on the thickness value. At the edges, the plates are 60 mm thick and 2 x 30 mm 
thick. In the middle, plates are 40 mm thick and 2 x 20 mm thick.

S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, M. Pauly (eds.): Advances in Architectural Geometry 2016 
© 2016 vdf Hochschulverlag AG an der ETH Zürich, DOI 10.3218/3778-4_16, ISBN 978-3-7281-3778-4 
http://vdf.ch/advances-in-architectural-geometry-2016.html



236

10.	Hyperactive Structure
Having hydraulic cylinders in the structural system means that the structure is 
permanently active, like a muscle in a living being. This opens a huge field of  
innovation for structural design called hyperactive structures.

One of its first applications is the clear distinction between ultimate state 
and serviceability state. The resistance of the structural element can be designed 
according to the ultimate limit state; the serviceability limit state could be man-
aged separately.

Indeed, in order to respect the serviceability or to reduce the deflection, we 
have to manage the stress inside the hydraulic cylinders because it acts directly 
on the shape. In practice, when deflection is too high, we can increase the pres-
sure in the cylinders to balance the deflection and vice versa (see Fig. 15).

Sensors are necessary to analyse the structure state and to determine the 
deflection value. A post-process state is also necessary to inform the hydraulic 
cylinder, which is commonly used in robotics and in mechanical engineering. 
These technologies can also be used for bridges.

One of the main advantages of this scheme is to provide a lightweight struc-
ture with high performance and reactive behaviour. In his paper “Pumping vs. Iron”, 
Gennaro Senatore et al. (2011) presented some interesting results about this topic.

As explained above, the weak point of such structures is the dynamic be-
haviour. With dynamic excitation, the hydraulic cylinders don’t have time to be 
reactive to stop the vibration. In such a case, a complete dynamic study must 
be done by taking into account the damping, which is very high and helpful for 
these mechanisms.

11.	Double Shear Plate
To produce the pair of scissors, we had to find a method providing high accuracy. 
Even a tiny deviation or distortion in a pivot positioning could stop the assembly 
or prevent the mechanism from working correctly. Welds and laser cuttings are 
prohibited in that degree of accuracy as they would distort the steel plates too 
much. Therefore, we chose water-cutting technology, which can cut plates up to 
100 mm thick with a low temperature and thus not cause damage to the form. 
Then, the plates were machined to drill the holes for the pivot pins (see Fig. 16).

 To manage the difference of stress distribution inside the structural scissors, 
we decided to change the plate thickness: More stress implies more thickness. 
In the middle, we put a thin plate to reduce the weight, because this area has a 
major influence on the vertical deflection.

In the end we chose four different plate thicknesses (20, 30, 40, and 60 
mm) for building the structure. Each plate is joined in double shear with the next 
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Figure 18. Exploded view of the fabrication model. Stringers control the vertical position of each stair frame with a slot. 
Each stair frame is linked with two rods to next frame. The frames slide into the slots of the stringer. There is no gap 
between the treads.

neighbour plates; for instance, the 60 mm plate is joined to 2 x 30 mm plates 
in order to transfer correctly the stress and to avoid eccentricity in the pin rods 
(see Fig. 17).

In the middle, the thickness of the plates is reduced to 40 mm and 2 x 20 
mm, respectively, in order to give more lightness in this area and have greater 
influence on the deflection. The middle scissor is different from the others: It is 
a scissor with single shear plates of 30 mm, which allows it to have a fully sym-
metric structure.

12.	Stair and Deck
The particularity of the footbridge is the transforming deck. As mentioned above, 
we wanted to allow pedestrians to cross the footbridge even when it is raised. 
To this end, we put a mechanical deck in place which follows the bridge trans-
formation by evolving into a stair. This mechanism comprises two basic parts: 
The first is the stair stringer, which is linked to the scissor with a rod to rule the 
slope of the stair; the second is the stair frame, which slides in the stair stringer 
to reach the correct position. The treads are made of oak planks, and the rises 
are included in the stair frame.

The stair is thus like a sheet lying on the footbridge; it follows the bridge 
transformation without resistance. The stability of the stair frame is provided by 
the rods that link the frames together (see Fig. 18).
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13.	Conclusions
The “Jet d’Eau” footbridge of Geneva was specially designed to provide differ-
ent traffic modes, such as wheelchair and gentle mobility, pedestrian traffic, and 
boat-passing. The traffic mode can’t be active at the same time, but the project 
serves to reconcile the needs of all users according to their attendance rates.

The method we developed to build the scissors mechanism can be used for 
any kind of curved shape. In our project we used the sinus shape, though we can 
imagine different shapes for other applications. The method is flexible, since it 
is possible to modify a single parameter, like path or height, in order to discover 
different solutions. The scissors mechanism does not have high stiffness, but 
the deflection can be managed by a hyperactive behaviour and the vibration are 
balanced by the high damping ratio.

This project is an application of technologies stemming from the mechani-
cal field to a civil-engineering task. The use of hydraulic cylinders is rare in civil 
engineering, but we have shown that it is effective for changing the geometry 
of the structure and also for enhancing the structural behaviour. It is relevant for 
the future development of buildings and civil works that can evolve in their forms 
and also adapts to suit multiple needs (see Fig. 19).
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Figure 19.The footbridge in situ during the rise. The movement from flat to raised takes around 90 s.
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